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Abstract

Two distinct types of simple support boundary conditions are formulated for rectangular plates undergoing in-plane free
vibration. Each type of simple support is shown to be analogous to the well known simple support edge conditions
encountered in the free transverse vibration analysis of rectangular plates. It is shown that exact solutions may be obtained
for plate free vibration eigenvalues and mode shapes when two opposite plate edges are given either type of simple support,
the other two edges being given any combination of classical edge conditions. A complete analysis is provided for plate in-
plane vibration with pairs of clamped or free edge conditions imposed on the non-simply supported boundaries and exact
eigenvalues are tabulated for a large range of plate aspect ratios. This appears to be the first thorough study of these in-
plane vibration problems with exact solutions.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that a vast literature exists pertaining to the free lateral vibration of rectangular plates. The
situation with regard to the free in-plane vibration of the same plates is quite different. Only a relatively small
number of publications have been devoted to this latter subject over the years. This is no doubt due in part to
the fact that plate in-plane vibration generally involves much higher natural frequencies which are considered
to be beyond the level of available excitation forces. Nevertheless, it is found that in the case of plates
subjected to tangential fluid boundary flow, such as on the hulls of ocean-going ships, for example, plate in-
plane vibration can be excited. There can also be an interrelation between this in-plane vibration and
associated acoustic effects, with generation of noise in the immediate environment. There is therefore a strong
incentive to gain an understanding of the entire subject of in-plane plate vibration and the mathematical
modeling of such phenomena.

A significant contribution to the subject of rectangular plate in-plane vibration was made by Bardell et al. in
1996 [1]. They also made a valuable survey of much of the related literature available up to that time. In
particular, they referred to the pioneering work of Lord Rayleigh dealing with what was referred to as ‘simply
supported’ plates [2].
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Nomenclature ¢ plate aspect ratio b/a
¢ inverse of plate aspect ratio

a,b quarter-plate edge lengths 03,0y, Ty, dimensionless in-plane normal and
ap =1.0 shear stresses, defined in text
an =v w circular frequency of plate vibration
a6 =(-v)/2 o mass density of plate material
E Young’s modulus of plate material v Poisson ratio of plate material taken
u,v plate displacements in ¢ and n direc- here as 0.3

tions, respectively 22 dimensionless frequency of plate vibra-
uv dimensionless displacements, U = u/a, tion, 2 = wa[p(1 —v?)/E]'/?

V=uv/b po alternate formulation of dimensionless
X,y quarter-plate rectangular coordinates frequency, /112, = wh[p(1 —?) /E]]/ 2
En dimensionless coordinates, &=

x/a, n= y/b

The work undertaken in the present paper is in many respects a counterpart of that undertaken much earlier
by Leissa in connection with the free lateral vibration of rectangular plates [3]. In Leissa’s paper it was shown
that, for rectangular plates with a pair of opposite edges simply supported, exact solutions are obtained for all
possible combinations of classical boundary conditions along the other edges.

In the present paper it is demonstrated, in a parallel fashion, that for in-plane vibration there exists two
distinct classes of ‘simple support’ edge conditions. It is further shown that for any rectangular plate, with a
pair of opposite edges given either of the above classes of simple support, exact free vibration solutions may be
obtained for any combination of classical boundary conditions enforced along the remaining edges. Exact
eigenvalues and mode shape information are presented for plates with a pair of opposite edges given either of
the two classes of simple support and the non-simply supported edges being either free or clamped.

2. Mathematical procedure
2.1. The dimensionless equilibrium equations and in-plane stress formulations

The governing dynamic equilibrium equations for the in-plane problem were developed in dimensionless
form in Ref. [4]. They are reproduced here for the sake of completeness only. They are,

6 U a126 V Clé(,{an 162U} 4
a + 20 A+ U =0 1
W@ T g okn T § \oton T 6 o o
and
62 OV LEUY  an QU andV sy 2
s gaconS T ¢ anoc T ¢? o

All of the symbols are as defined in the nomenclature with sign conventions as indicated in Fig. 1. The
dimensionless frequency is designated by the symbol, />, where 2> = way/p(1 —v?)/E.

It was also shown in Ref. [4] that in-plane normal and shear stresses are expressed in dimensionless
form as

G*_UG_U+L6_V o 6U+1)6V . aU <f>—
yoUoE  gopt pon’ T
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Fig. 1. Schematic view of typical rectangular plate with central coordinate axes.

2.2. The two classes of simple support boundary conditions

It will be recalled that in the study of rectangular plate free lateral vibration a simply supported edge is
characterized by the fact that lateral displacement along the edge is forbidden and the same edge is free of
bending moment. Such edges are often referred to as ‘pinned’ edges.

In examining the free lateral vibration of rectangular plates with two opposite edges simply supported the
analyst is presented with an immediate significant advantage. The plate vibratory behavior may be expressed
in the form of a solution with trigonometric sine functions running between the simply supported edges. This
is because each term in the solution satisfies exactly the prescribed simple support edge conditions. This being
the case, no series summations are required and exact solutions for the eigenvalues and free vibration mode
shapes associated with any number of half sine waves running across the plate are immediately achievable.
This is so, provided the other boundary conditions are of the classical (simply supported, clamped, free) type.

This form of solution is often referred to as a Levy type solution, or Voight solution. Voight was the first to
replace the static surface loading with the inertia (body) force for the purposes of free vibration analysis. Such
solutions will be referred to in this paper as Voight solutions.

It is well known that three categories of classical boundary conditions exist for rectangular plate lateral
vibration as well as static problems. These are clamped, free, and simply supported boundary conditions. A
completely analogous set of boundary conditions, also known as clamped, free, and simply supported, also
exist for rectangular plate in-plane vibration. Of course, the mathematical formulation of these edge
conditions is slightly different. This was recognized by Bardell et al. [1] for example, who have employed the
same terminology, as has the present author. It is again, only those plate problems where at least one pair of
opposite simply supported edges exist that exact solutions can be obtained for plate free in-plane vibration
behavior. Exact solutions for a limited number of in-plane vibration problems with simple support along all
edges were obtained by Lord Rayleigh and are referred to in Ref. [1].

It is found that in the case of in-plane rectangular plate free vibration analysis two distinct sets of ‘simple
support’ boundary conditions are physically realizable. We choose to designate these two sets of boundary
conditions by the symbols SS1, and SS2.

Edges associated with the first set, SS1, are characterized by the fact that plate displacement parallel to the
edge is forbidden as well as normal stress perpendicular to the edge.

The second set of simply supported edges are designated here by the symbol SS2. Such edges
are characterized by the fact that shear stress along the edge is forbidden as well as displacement normal
to the edge.

This latter type of boundary condition was the one designated by the term ‘simple support’ in the work of
Bardell et al. [1], and Lord Rayleigh [2].
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2.3. Analysis of plates with type SS1 boundary conditions

We will analyze the free in-plane vibration of plates of this set with two distinct types of support along the
non-simply supported edges. These latter edges will both be free, or both given clamped support.

In view of the nature of the imposed boundary conditions it will be obvious that for all problems analyzed
here the free vibration mode displacements must possess a symmetry, or antisymmetry, about the central axes
of the plate under analysis (Fig. 1). The reader will find a thorough discussion of this phenomenon in Refs.
[4,5]. Suffice it to say that here a mode is said to possess symmetry with respect to a central axis if amplitude of
displacement normal to the axis is a maximum and displacement parallel to the axis is zero. Conversely, a
mode is said to possess antisymmetry with respect to a central axis if displacement normal to the axis is zero
while amplitude of displacement parallel to the axis is a maximum. We define modes as being fully symmetric
if their displacement possesses symmetry with respect to both central axes. Conversely, modes whose motion is
antisymmetric with respect to both axes are said to be fully antisymmetric. There exists two other families of
modes. One family possesses symmetry with respect to the &-axis (Fig. 1) and antisymmetry with respect to the
n-axis. The other family possesses symmetry with respect to the n-axis and antisymmetry with respect to the &-
axis. These four families of modes comprise all possible modes for the plate vibration problems discussed here.
Each mode family will be analyzed separately.

It will also be observed that, provided appropriate boundary conditions are enforced, only one quarter of
the plate of interest need be analyzed [4].

One might be tempted at this point to settle for a single analysis of the entire plate with a view to obtaining
eigenvalues and mode shapes for every possible plate free vibration mode. This might seem to require less
effort than focusing on the three families of plate vibration modes separately as discussed above, through
analysis of the quarter plate. Experience has shown this latter approach to be highly preferable.

First, through separate analysis of the individual mode families, only the eigenvalues associated with the
particular family under investigation will be uncovered. The eigenvalue density will therefore be only about
one third of that which would be otherwise encountered. The probability of missing an eigenvalue is thereby
greatly reduced. Furthermore, one avoids the problem of having to contend with repeated eigenvalues.

Secondly, interpretation of the computed mode shapes with mode family separation becomes a much more
manageable task. Repeated eigenvalues were encountered for square plates in the excellent work of Bardell et
al. [1, pp. 462—463]. Had they analyzed the mode families separately, as is done here, the presence of repeated
eigenvalues, which are easily missed in the eigenvalue search, would have been avoided and it would not have
been necessary to try and identify the significance of repeated eigenvalues through mode shape studies of
related shapes.

Many of the advantages of the quarter-plate approach, where boundary conditions permit it to be exploited,
are already elaborated upon in Section 3 of Ref. [4]. The reader is encouraged to review this section. It is also
pointed out that one of the symmetric—antisymmetric modes reported by the present author appears to have
been missed in the study of Ref. [1].

For these, and a number of other reasons, the author continues with exploitation of the well established
quarter-plate approach when it is applicable such as in the present problem under study.

2.3.1. Fully symmetric modes

Referring briefly to Voight type series solutions utilized in Ref. [5], when analyzing fully symmetric modes of
fully clamped plates, and focusing on individual terms of these series, it is found that we can write for
displacements related to the quarter plate of interest (Fig. 2),

V(& n) = V() sin mng (3)
and
U(&,n) = Un(n) cos mné, 4)

where m takes on values of 0, 1,2, etc. The case where m equals zero is a special case to which we will return
shortly.
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Fig. 2. Schematic view of quarter plate whose vibratory behavior is analyzed.

We focus first on the case where m > 1. It is important to note that all of the required boundary conditions at
the extremities of the trigonometric functions, as discussed above, are satisfied exactly by expressing the
displacements as given by Egs. (3) and (4).

The next step in the analysis is to substitute Eqgs. (3) and (4) into the governing differential equations. The
procedure is described in detail in Ref. [4]. Upon substitution, the variable ¢ is eliminated and the governing
differential equations become

Am1 UIHn(n) + bml V,‘n(ﬂ) + ¢mi Um(17) =0 (5)
and
a2 V(1) + b U (1) + o2 V() = 0, (6)
where
a a
am) = (bizé, bm = EMP(QD + a66)/¢, ¢l = —a EMPS + /14, Ay = ﬁ,
EMP
b = — 7[6166 +ap] and ¢ = 24— ass EMPS.

Here, superscripts indicate differentiation with respect to the variable #, and the symbols EMP and EMPS
represent the product, mm, and (mn)?, respectively.

Through a simple process of differentiating, and adding and subtracting Egs. (5) and (6), an ordinary
homogeneous differential equation involving the quantity V,,(y) only is obtained [4]. This equation is
written as

VIV )+ bV () + V() = 0, (7)
where

b= [amlcmZ - bmlme + leamZ]/(amlamZ) and c¢= lecm2/(amlan12)~

The characteristic equation associated with Eq. (7) can be written as D* + bD? + ¢ = 0, and setting D*> = ¢,
we write the quadratic equation & 4 be 4 ¢ = 0. Thus we obtain the roots &, = —b + /b* — 4¢/2, and
—-b— Jb2 —4c¢/2. Since the quantity b?> —4¢=0 for all problems encountered here, both of the above
quantities are real. Denoting ¢; as rootl, and ¢, as root2, the exact solution for Eq. (7) is available from any
text dealing with elementary theory of differential equations and depends on whether rootl, root2, etc., are
positive or negative.
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Introducing the quantities f8,, = i/[rootl|, and y,, = 4/|root2|, three possible forms of solution exist for Eq.
(7). They are as follows.
Solution 1: rootl >0.0, root2<0.0.

Vm(”l) = Am Sil’lh ﬁmn + Bm COSh ﬁmn + Cm SiIl Vm’? + Dm Cos ymn’ (8)

where A,,, B;, > etc. are constants to be determined.
Solution 2: rootl <0.0, root2<0.0.

Vm(rl) = Am Sin Bm’/l + Bm Cos ﬂmn + Cm Sin Vm’? + Dm Cos ym”' (9)
Solution 3: rootl >0.0, root2>0.0.
V() = Ay, sinh B, n + B, cosh B,n+ C,, sinh y,, 4 + D, cosh y,1. (10)

For any of the above solutions the corresponding form of solution for the quantity U,(n) is readily
obtained through manipulation of Egs. (5) and (6) [4].

Turning next to enforcement of appropriate boundary conditions along the edge, n = 0, it follows that all
terms in the above solutions for V(1) which are antisymmetric with respect to the é-axis must be deleted. The
final step is to enforce appropriate boundary conditions along the edge, n = 1. We proceed as follows:

Case 1: Solution 1 applicable.

Vm(n) = By cosh ﬁm’” + Dy, cos YmM> (l l)
with
Un(n) = Bmoom sinh f,,n1 + D04 sin y,,1, (12)
Where om = ﬁm[amlanﬂﬂi + Am1Cm2 — bmlme]/leme and Oam = Vm[amlamﬂ},zn — Am1Cm2 + bmlbm2]/cmlcm2-
(1) Simply supported plate with other edges free.
Here, free edge conditions must be enforced along the boundary, n = 1.
This involves enforcing conditions of zero shear stress and zero normal stress along the boundary.

Expressions for shear stress and normal stress are provided in Section 2.1.
Enforcing a condition of zero shear stress along this boundary we obtain

Vim(n) = By[cosh B, + 01, cos y,,1] (13)
and
Un(n) = Bplom sinh B, + 010 sin 7,11, (14)
where
0, — [o2mpB,, + QEMP] cosh 3,

 [%4m)p + PEMP]cOS 7,
Next, enforcing the condition of zero normal stress perpendicular to the boundary, n = 1, we obtain
B0, =0, (15)
where

O11m = { [% — UEMPO(2,71:| sinh 8, — 01, [%" + uEMPoc4m] sin ym}.

It will be apparent that a non-trivial solution can exist for the coefficient B, only if the quantity 01y, is equal
to zero. Accordingly, for the symmetric-symmetric modes under study, having chosen a desired value for ‘n?’,
the number of half-waves in displacement V" running across the quarter plate in the & direction (see Eq. (3)),
the related eigenvalues are those values of the parameter 4> which cause the quantity 011, to vanish. Mode
shape displacements associated with any eigenvalue are obtained from Egs. (13) and (14) by assigning an
arbitrary non-zero value to the coefficient B,,.

The simple analytical procedure described above is common to all problems solved here where the plate
undergoes two-dimensional in-plane motion. Of course, for plates with clamped edges different boundary
conditions will be enforced along the non-simply supported edges. For the remaining problems considered
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here a detailed description of the analytical procedure will therefore not be provided. Only expressions for the
plate displacements and the quantities 01, and 0y, will be provided for the benefit of the reader.

(2) Simply supported plate with other edges clamped.

Enforcing the boundary conditions, displacement U equals zero, and displacement V' equals zero,
respectively, along the edge, n = 1, find

oom Sinh f5,,

Glm = - .
Olam SIN Yy,
and
O11m = cosh B, + 01,,cosy,,,,

with displacements as given by Egs. (13) and (14).
Case 2: Solution 2 applicable.

Vm(’/’) = By, cos Bm”/ + D, cos YmM> (16)
with
Um(l’]) = Byoom sin ﬁm n—+ Dy 04 sin ym(n): (17)
where
0om = ﬁm[amlamZB%n — dmiCm2 + bmlbm2]/cmlbm2
and

2 ,
Q4 = Vm[amlarnZVm — amiCm2 + bmlme]/leme-

(1) Simply supported plate with other edges free.

Vin(n) = Bul[cos B, + Oum €08 7,1] (18)
and
Unn(n) = Byloom sin 11 + O1tam sin 9,11, (19)
where
0y, = — [0 B, + GEMP] cos f,,
[%4m),n + PEMP] cos 3,
and
O1im = — [%" + UEMPoczm] sin f8,, — 01 {%’1 + uEMPoc4m] sin y,,,.
(2) Simply supported plate with other edges clamped.
Displacements as given by Egs. (18) and (19) with
O1m = —%l;f:, 011m = cos B, + 01, cosy,,.
Case 3: Solution 3 applicable.
V() = By, cosh f,,n + D,, cosh y,.n, (20)
with
Un(n) = Buoom sinh f,,1 + Doy sinh y,,1, 21

where oy, = ﬂm[amlamzﬁfn + Am1Co2 — bmlbmz]/cmlme and oy, = Vm[amlamZV,zn + amiCm2 — bmlme]/leme-
(1) Simply supported plate with other edges free.

Vin(n) = Bylcosh B, + 01, cosh 7,1 (22)
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and
Un(n) = Byloam sinh B, + 01,04y, sinh y,.n], (23)
where
0y, = — [c2m,,, + YEMP] cosh B,
[eamy,, + PEMP] cosh y,,
and
011 = {% - uEMPoczm} sinh 8, + O {% - vEMPoc4m} sinh y,,,.
(2) Simply supported plate with other edges clamped.
Displacements as given by Egs. (22) and (23) with
o sinh 5,

91111 = - .
o4 sinh 7y,

and 0y, = cosh f,, + 01, cosh y,,,.

Finally, we must examine the one-dimensional mode (m = 0). Returning to Egs. (3) and (4) it is seen that for
this mode displacement V' will be zero and displacement U will be a function of #, only. Examining the
governing differential equations it is found that only one differential equation, in revised form, is applicable
and it may be written as

0’ U(n)
on?

where U(n) represents plate in-plane displacement and

062 = i4¢2/a66.

+a*U(p) =0, (24)

The solution for Eq. (24) is well known and is expressed as
U(n) = A sin an + B cos an, (25)

where 4 and B are constants to be determined.
In view of the antisymmetry of displacement U(s) about the ¢ axis the constant B must be set equal to zero.
We are therefore left with the equation

U(n) = A sin on. (26)

For the case of free boundaries a condition of zero shear stress must be imposed along the edge, n = 1. We
therefore write

Aacosonl,—; = 0. 27
A non-zero solution for the quantity A4 is possible only if we impose the condition
3
o= g,;,...,@n — l)g, etc.
Using our expression for ¢ we obtain
, T
W2 =(@2n— 1)§[a66]1/2/¢. (28)

Exact eigenvalues (4%) for this one-dimensional mode family are therefore provided explicitly by Eq. (28),
and associated mode shapes are provided by Eq. (26) where any arbitrary value may be assigned to the
constant A.

For the case of clamped edge conditions a condition of zero displacement parallel to the edge, n = 1, must
be imposed.
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Returning to Eq. (26) we see that the quantity o must take on values of
o=m2mn,....,nt, n=1,2,... etc.

This leads to the expression

7 = nnlaes)'*/ ¢. (29)

Here, exact eigenvalues, /2, are obtained from Eq. (29) with mode shapes provided by Eq. (26).
An analysis for antisymmetric and symmetric—antisymmetric modes of this set is provided in Appendix A.

2.4. Analysis of plates with type SS2 boundary conditions

The analysis to follow differs only slightly from that already described in detail for plates with SS1 type
simple supports. Accordingly, in what is to follow, only the differences in analytical procedure required to take
care of this alternative type of simple edge support will be elaborated upon.

2.4.1. Fully symmetric modes
Here we refer to Voight type solutions utilized in Ref. [4] when analyzing fully symmetric in-plane modes of
the completely free plate. Focusing on individual terms of the series employed we write

2m — )ré

V(f, 7’) = Vm('/l) sin B

(30)

and

2m — )ré

U(En) = Un( cos === (1)

where m=1,2,... etc.

It is easily shown that the SS2 boundary conditions are satisfied along the edge, £ = 1, as well as the
conditions of symmetry required along the n-axis, by the above trigonometric functions.

Substituting the above expressions for displacements U and V into the governing differential equations we
again obtain Egs. (5) and (6), with the same constants a,,b,,, etc. Here the quantity EMP equals
(2m — 1)n/2. Again, manipulating Eqs. (5) and (6) we obtain Eq. (7) with the same associated constants b and
¢. Solutions are as given by Egs. (8)—(10). It will be apparent that all terms for V(1) which are antisymmetric
with respect to the ¢-axis must be deleted. Eigenvalues and mode shapes for the fully symmetric modes under
investigation here are obtained by following procedures identical to those discussed earlier.

Case 1: Solution 1 applicable.

V() = B, cosh ﬂm”] + D, cos y,,1 (32)
and
Un(n) = Bumooy sinh B,,n + Doy, siny,n, (33)

2 R 2
where 0om = ﬁm(amlanﬁﬁm + apiCm — bmlbm2)/cmlbm2; O4m = /m(amlamZ'ym — am Cm2 — bmlme)/lebMQ-
(1) Plate with free edges.

V() = By[cosh B,n + 01, cos y,,1] (34)

and
Un(n) = Bulozm sinh B0 4 010t sin 1], (35)

with

_ [OC2mBm + ¢EMP] cosh ﬁm
[a4mym + ¢EMP] COS Vi

01/11 =
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and

011 = [%m - vEMPoczm] sinh B, — O1 [% + vEMPoc4m] sin 7,

(2) Plate with clamped edges.
Displacements are given by Egs. (34) and (35):

oo Sinh f3,,
Oy =——""—"7-7""
Olgm SN )y,
and
011,» = cosh ﬁm + 01,,, cos VY-
Case 2: Solution 2 applicable.
Vm(’?) = Bm COS ﬁmn + Dm COS VM
and

Um("]) = Bm(x2m sin ﬁmn + Dma4m sin Yl

2 2
where Oom = :Bm(amlamLBm — am1Cm2 + bmlme)/lemea O4m = 'Ym(amlamZ'ym — Am1Cm2 + bmlme)/leme-

(1) Plate with free edges.
V() = Bulcos B,,n + 01 cos 7,1

and
Unn() = Bi[otom sin f,11 + O1m0tam sin 1],
with
0, — _ [comB,, + pEMP]cos B,
[24m7,,, + PEMP] cos v,
and

[)) m ym

O = — [— + vEMPoczm} sin f3,, + 01, {— + vEMPoum} sin y,,,.

¢ ¢

(1) Plate with clamped edges.
Displacements are given by Egs. (38) and (39):

oom Sin f,,
Opm=——"—"""=
Olgp SIN Y,
and
O11m = cos B, + O cOS 7,y
Case 3: Solution 3 applicable.
Vm(n) = Bm cosh an + Dm cosh Y
and

U,,(n) = Byooy sinh f,,.n + D04, sinh vy, 7,

2 2
where om = ﬂm(amlanﬂﬁm + dmiCm2 — bmlbm2)/cm1bm2, 04 = Vm(amlamfym + dmicm — bmlme)/Cm]bn12~

(1) Plate with free edges
V() = By[cosh an + 01, cosh el
and

U,,(n) = Byloay, sinh B,,n + 01,04y, sinh y,n],

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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with

[22m B, + PEMP] cosh B,
[o{4mym + ¢EMP] cosh Ym

Hlm = -
and
011 = [’; - vEMPon} sinh B, + 01 Bﬁ - vEMPa4m} sinh 7,,.

(2) Plate with clamped edges.
Displacements are given by Eqs. (42) and (43):

oy Sinh f3,,

Blm = -
Clam sinh Ym

and
011, = cosh f,, + 01, cosh y,,,.

An analysis for antisymmetric and symmetric—antisymmetric modes of this set is provided in Appendix B.

3. Presentation of computed results

The reader can, of course, easily compute exact eigenvalues and mode shapes for any plate in-plane
vibration problem among the families of problems introduced here. In the case of problems with one-
dimensional mode shapes, exact solutions are provided in the text with no computation required. Otherwise it
is only necessary to search for values of the parameter, A%, which cause the pertinent value of the quantity,
011, as provided herein to take on a zero value.

Nevertheless, a set of tables of limited scope, based on computed exact eigenvalues, are provided for the
benefit of the reader.

3.1. Listing of computed eigenvalues

Data related to the four distinct plate plate-boundary configurations considered here are to be found in
Tables 1-4. Following conventional notation practices each plate configuration is designated by a set of four
symbols in ordered sequence. The first symbol indicates the boundary condition enforced along the left edge of
the full plate (Fig. 1). Subsequent symbols indicate boundary conditions enforced along the remaining edges,
in order, as we move counter clockwise around the plate. For example, the designation, SS1-F-SS1-F indicates
a plate with two opposite edges given SSI1 type edge support, the other two edges being free. The designation
SS1-C-SS1-C differs from that immediately above only in that free edges are replaced by edges with clamped
support. Of course, there will be two other mode families where the SS1 edge conditions will be replaced by
edge conditions of the type SS2. The nature of these two types of edge support were explained in detail earlier.

Examining the eigenvalue listings of Tables 1-4, it will be seen that for each distinct type of mode, a three by
three array of eigenvalues is provided for a range of plate aspect ratios. The value of ‘m’, moving across the
top of the array, indicates the number of half or quarter waves in displacement, as appropriate, as we move
along the ¢-axis. The parameter n increases from 1 to 3 as we move down the array and indicates the order of
the mode, first, second, etc. This does not include the one-dimensional modes where they exist. A pair of
asterisks adjacent to a mode family heading indicates that one-dimensional modes also exist for that family
and that exact eigenvalues and mode shapes for these modes are to be found in the text.

It will be noted that tabulated eigenvalues are given to four significant digits. Also, it will be noted that for
plates with aspect ratios less than one, tabulated eigenvalues are non-dimensionalized with respect to b, the
shorter of the two edge lengths of the quarter plate (Fig. 2). This is in keeping with practices followed earlier in
plate lateral free vibration analysis.
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Eigenvalues, 4%, for the SS1-F-SS1-F rectangular plate. Eigenvalues, ii, stored when inverse of aspect ratio, ¢', listed

Fully symmetric modes™™

m
¢ =10 ¢ =125 ¢=15 ¢ =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 1.624 3.391 5.107 1.659 3.401 5.108 1.679 3.404 5.109 1.695 3.406 5.109
2 3.449 4.037 5.737 2.359 3.893 5.666 2.190 3.825 5.632 2.019 3.768 5.604
3 4.306 6.313 6.642 3.214 4.741 6.242 3.021 4.428 6.024 3.157 4.104 5.812
¢l =125 ¢'=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 1.259 2.694 4.080 1.013 2.223 3.391 0.7038 1.624 2.518
2 2.338 3.427 4.697 2.098 3.058 4.037 1.749 3.449 3.285
3 3.065 4.699 5.789 2.892 4.202 6.313 2.776 4.306 4.531
Fully antisymmetric modes
m
d=10 =125 p=15 =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 1.682 2.607 4.263 1.156 2.573 4.258 1.046 2.561 4.257 0.9331 2.555 4.257
2 2.517 4.705 5.338 1.597 3.550 5.063 1.569 3.310 4919 1.530 3.063 4.785
3 3.801 5.186 7.718 2.196 4.531 5.931 1.983 4.160 5.546 1.713 3.620 5.144
¢l =125 Pl=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 1.137 2.146 3.423 0.9717 1.866 2.874 0.7402 1.568 2.221
1.533 3.506 4.609 1.497 3.059 4.160 1.493 2.353 3.590
3 2.341 3.862 5.882 2.229 3.425 5.174 2.098 2.974 3.994
Modes symmetric about the £-axis and anti-symmetric about the n-axis
m
=10 ¢ =125 ¢=15 ¢ =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 0.7038 2.518 4.252 0.7485 2.539 4.256 0.7779 2.548 4.257 0.8121 2.553 4.257
2 1.749 3.285 4.867 1.611 3.072 4.767 1.502 2.963 4.721 1.725 2.869 4.683
3 2.776 4.531 5.926 2.283 4.073 5.463 1.994 3.724 5.202 2.153 3.321 4.942
¢l =125 ¢l =15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 0.5199 1.985 3.391 0.4000 1.624 2.811 0.2570 1.167 2.074
1.532 2.884 4.037 1.390 3.449 3.524 1.222 2.253 2.949
3 2.749 3.904 6.313 2.745 4.306 4.801 2.751 2.991 4.018
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Table 1 (continued)
Modes symmetric about the n-axis and anti-symmetric about the &-axis
m
¢=10 ¢ =125 ¢=15 ¢ =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 1.682 2.607 4.263 1.156 2.573 4.258 1.046 2.561 4.257 0.9331 2.555 4.257
2 2.517 5.186 5.338 1.597 3.550 5.063 1.569 3.310 4.919 1.530 3.063 4.785
3 3.801 4.705 7.718 2.196 4.531 5.931 1.983 4.160 5.546 1.713 3.620 5.144
¢l =125 ¢l=15 ¢ =20
n 1 2 3 1 2 3 1 2 3
1 1.137 2.146 3.423 0.9717 1.866 2.874 0.7402 1.568 2.221
2 1.533 3.506 4.609 1.497 3.059 4.160 1.493 2.352 3.590
3 2.341 3.862 5.882 2.229 3.425 5.174 2.098 2.974 3.994
Table 2
Eigenvalues, 22, for the SS1-C-SS1-C rectangular plate. Eigenvalues, /1,2), stored when inverse of aspect ratio, ¢', listed
Fully symmetric modes™*
m
b=10 =125 b=15 =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 2.205 3.865 5.667 2.070 3.808 5.633 1.999 3.778 5.614 1.933 3.750 5.597
3.422 4.825 6.338 3.051 4.444 6.062 2.769 4.225 5912 2413 4.002 5.762
3 4.241 6.104 7.450 3.735 5.424 6.822 3.459 4.967 6.457 3.052 4.453 6.077
¢l =125 ¢l=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 1.935 3.169 4.580 1.783 2.722 3.865 1.638 2.205 2.999
2 3.054 4.285 5.404 2.796 3.930 4.825 2.479 3.422 4.153
3 4.007 5.397 6.649 3.900 4.837 6.104 3.800 4.241 5.188
Fully antisymmetric modes
m
¢ =10 ¢ =125 ¢=15 ¢ =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 1.747 3.513 5.079 1.640 3.256 4918 1.561 3.110 4.832 1.405 2.965 4.748
2.814 4.682 6.137 2.310 4.238 5.633 2.007 3.864 5.340 1.725 3.427 5.039
3 3.570 5.116 7.432 3.000 4.841 6.607 2.626 4.680 6.073 2.164 4.047 5.484
¢l =125 Pl=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 1.510 3.097 4.265 1.362 2.811 3.755 1.193 2.342 3.166
2 2.783 3.942 5.464 2.773 3.450 4.993 2.771 3.010 4.072
3 3.440 4.627 6.399 3.361 4.327 5.492 3.274 3.939 4.701
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D.J. Gorman | Journal of Sound and Vibration 294 (2006) 131-161

Modes symmetric about the &-axis and anti-symmetric about the n-axis

m
¢=1.0 ¢ =125 ¢=15 ¢ =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 1.638 2.999 4.760 1.393 2916 4.716 1.250 2.874 4.694 1.103 2.834 4.673
2 2.479 4.153 5.555 2.172 3.722 5.232 1.972 3.455 5.052 1.711 3.169 5.245
3 3.810 5.188 6.780 3.099 4.727 6.099 2.642 4.301 5.685 2.121 3.725 5.245
¢l =125 ¢l=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 1.581 2.508 3.865 1.558 2.205 3.283 1.545 1.875 2.588
2 2.301 3.741 4.825 2.191 3.422 4.373 2.066 2.958 3.814
3 3.773 4.573 6.104 3.754 4.241 5.531 3.737 3.963 4.669
Modes symmetric about the n-axis and anti-symmetric about the &-axis
m
¢=1.0 ¢ =125 ¢p=15 ¢ =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 1.747 3.513 5.079 1.640 3.256 4918 1.561 3.110 4.832 1.405 2.965 4.748
2 2.814 4.682 6.137 2.310 4.238 5.633 2.007 3.864 5.341 1.725 3.427 5.039
3 3.570 5.118 7.432 3.000 4.841 6.607 2.626 4.680 6.073 2.164 4.047 5.484
¢l =125 Pl=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 1.510 3.097 4.265 1.362 2.811 3.755 1.193 2.342 3.166
2 2.783 3.942 5.464 2.773 3.450 4.993 2.771 3.010 4.072
3 3.440 4.627 6.399 3.361 4.327 5.492 3.274 3.939 4.701
Table 3
Eigenvalues, 22, for the SS2-F-SS2-F rectangular plate. Eigenvalues, /1,2,, stored when inverse of aspect ratio, ¢, listed
Fully symmetric modes™*
m
d=10 =125 b=15 =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 0.7038 2.518 4.252 0.7485 2.539 4.256 0.7779 2.548 4.257 0.8121 2.553 4.257
2 1.749 3.285 4.867 1.611 3.072 4.767 1.502 2.963 4.721 1.724 2.869 4.683
3 2.776 4.531 5.926 2.283 4.073 5.463 1.994 3.724 5.202 2.153 3.321 4.942
¢l =125 ¢l=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 0.5199 1.985 3.391 0.4000 1.624 2.811 0.2570 1.167 2.074
1.532 2.884 4.037 1.390 3.449 3.524 1.222 2.253 2.949
3 2.749 3.904 6.313 2.745 4.306 4.801 2.751 2.991 4.018
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Table 3 (continued)
Fully antisymmetric modes
m
¢=10 ¢ =125 ¢=15 ¢ =20
n 1 2 3 1 3 1 2 3 1 2 3
1 1.866 3.423 5.111 1.776 3.410 5.109 1.738 3.407 5.109 1.712 3.406 5.109
2 3.059 4.609 6.125 2.872 4.270 5.903 3.137 4.084 5.789 2.304 3.904 5.685
3 3.425 5.882 7.241 3.195 6.174 6.655 3.457 4.827 6.319 2.941 4.349 5.981
¢l =125 ¢l=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 1.622 2.767 4.094 1.485 2.347 3.423 1.682 1.866 2.607
2 2.497 4.073 5.187 2.113 3.716 4.609 2.517 3.060 4.705
3 3.064 4.990 6.440 2.822 4.225 5.882 3.801 3.425 5.186
Modes symmetric about the &-axis and anti-symmetric about the y-axis™™*
m
¢=10 ¢ =125 ¢=15 ¢ =20
n 1 2 3 1 3 1 2 3 1 2 3
1 3.582 7.025 9.935 3.582 6.767 9.754 3.582 6.623 9.655 3.512 6.477 9.555
2 4.443 7.164 10.75 4.023 7.164 10.68 3.776 7.164 10.31 3.582 7.025 9.935
3 7.025 8.886 11.33 5.928 8.046 10.75 5.236 7.551 10.75 4.443 7.164 10.54
¢l =125 $l=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 2.866 5.731 8.168 2.388 4.776 7.025 1.791 3.582 5.373
2 4.023 5.928 8.597 3.776 5.236 7.164 3.512 4.443 5.664
3 6.767 8.046 9.815 6.623 7.551 8.886 6.477 7.025 7.854
Modes symmetric about the n-axis and anti-symmetric about the £-axis
m
¢=1.0 ¢ =125 ¢=15 ¢ =20
n 1 2 3 1 3 1 2 3 1 2 3
1 1.682 2.607 4.263 1.156 2.573 4.258 1.046 2.561 4.257 0.9331 2.555 4.257
2 2.517 5.186 5.338 1.597 3.550 5.063 1.569 3.310 4919 1.530 3.063 4.785
3 3.801 4.705 7.718 2.196 4.531 5.931 1.983 4.160 5.546 1.713 3.620 5.144
¢l =125 ¢l=15 ¢l =20
n 1 2 3 2 3 1 2 3
1 1.137 2.146 3.423 0.9717 1.866 2.874 0.7402 1.568 2.221
2 1.533 3.506 4.609 1.497 3.059 4.160 1.493 2.352 3.590
3 2.341 3.862 5.882 2.229 3.425 5.174 2.098 2.974 3.994




146

Table 4

D.J. Gorman | Journal of Sound and Vibration 294 (2006) 131-161

Eigenvalues, 4%, for the SS2-C-SS2-C rectangular plate. Eigenvalues, /112,, stored when inverse of aspect ratio, ¢/, listed

Fully symmetric modes

¢=10 ¢ =125 ¢=15 ¢ =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 1.638 2.999 4.760 1.393 2916 4.716 1.250 2.874 4.694 1.103 2.834 4.672
2 2.479 4.153 5.555 2.172 3.722 5.232 1.972 3.455 5.052 1.711 3.169 4.872
3 3.809 5.188 6.780 3.099 4.727 6.099 2.643 4.301 5.685 2.121 3.725 5.245
¢l =125 $l=15 ¢l =20
n 1 2 3 1 3 1 2 3
1 1.581 2.508 3.865 1.558 2.205 3.283 1.545 1.875 2.588
2 2.301 3.741 4.825 2.191 3.422 4.373 2.066 2.958 3.814
3 3.773 4.573 6.104 3.754 4.241 5.531 3.737 3.963 4.669
Fully antisymmetric modes™™
¢=10 ¢ =125 =15 ¢ =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 2.811 4.265 5.931 2.532 4.063 5.798 2.342 3.954 5.728 2.132 3.847 5.660
2 3.450 5.464 6.855 3.257 4910 6.409 3.121 4.570 6.157 2.732 4.207 5.903
3 4.327 6.399 8.095 3.761 5.945 7.288 3.411 5.397 6.801 3.199 4.733 6.284
¢l =125 $l=15 ¢l =20
n 1 2 3 1 3 1 2 3
1 2449 3.657 4912 2.150 3.280 4.265 1.747 2.811 3.513
3.076 4.879 6.000 2.923 4.286 5.464 2.814 3.450 4.682
3 4.017 5.331 7.284 3.812 4.828 6.399 3.570 4.327 5.116
Modes symmetric about the £-axis and anti-symmetric about the n-axis
=10 ¢ =125 p=15 ¢ =20
n 1 2 3 1 2 3 1 2 3 1 2 3
1 2.205 3.865 5.667 2.070 3.808 5.638 1.999 3.778 5.614 1.933 3.751 5.597
2 3.422 4.825 6.338 3.051 4.444 6.062 2.769 4.225 5.912 2.413 4.002 5.762
3 4.241 6.104 7.450 3.735 5.424 6.822 3.459 4.967 6.457 3.052 4.453 6.077
¢l =125 $l=15 ¢l =20
n 1 2 3 1 3 1 2 3
1 1.935 3.169 4.580 1.783 2.722 3.865 1.638 2.205 2.999
3.054 4.285 5.404 2.796 3.930 4.825 2.479 3.422 4.153
3 4.000 5.397 6.649 3.900 4.837 6.104 3.809 4.241 5.188
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Table 4 (continued)

Modes symmetric about the n-axis and anti-symmetric about the &-axis
m

¢=1.0 ¢ =125 ¢=15 ¢ =20

n 1 2 3 1 2 3 1 2 3 1 2 3

1 2.811 4.625 5.931 2.532 4.063 5.798 2.342 3.954 5.729 2.132 3.847 5.660
2 3.450 5.464 6.855 3.257 4910 6.409 3.122 4.570 6.157 2.732 4.207 5.903
3 4.327 6.399 8.095 3.761 5.945 7.288 3.411 5.397 6.801 3.200 4.733 6.284

¢l =125 $l=15 ¢l =20
n 1 2 3 1 2 3 1 2 3
1 2.450 3.657 4912 2.150 3.280 4.265 1.747 2.811 3.513
2 3.076 4.879 6.000 2.923 4.286 5.464 2.814 3.450 4.682
3 4.017 5.331 7.284 3.812 4.828 6.399 3.570 4.327 5.116
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Fig. 3. Vibratory displacement pattern for first fully symmetric mode of square plate with designation SS1-F-SS1-F.

3.2. Mode shape studies

Mode shapes associated with any eigenvalue are easily generated. The practice has been to plot the shape of
the quarter plate only. Numerous such mode shapes have been generated, however, only a limited number are
presented here for the purposes of discussion.

In Fig. 3 the computed quarter-plate first mode displacement pattern is presented for a square plate with the
designation SS1-F-SS1-F. It is evident that displacement parallel to the axes of the quarter plate equals zero.
This required condition will be observed in all plate displacement patterns for fully symmetric mode shapes
presented here. It is also evident in Fig. 3 that there is zero displacement parallel to the edge, £ = 1 (Fig. 2).
This is a requirement of simply supported edges with the designation SS1.
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Fig. 4. Vibratory displacement pattern for first fully symmetric mode of square plate with designation SS1-C-SS1-C.
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Fig. 5. Vibratory displacement pattern for first fully symmetric mode of square plate with designation SS2-F-SS2-F.

Turning to Fig. 4 related to the SS1-C-SS1-C plate we find that edge conditions discussed above in
connection with Fig. 3 are also satisfied. Here, however, the clamped condition along the edge, # = 1, is highly
evident.

Boundary conditions related to the mode shape of Fig. 5 (the SS2-F-SS2-F plate) differ from those of the
plate of Fig. 3 only in that now class SS2 conditions are imposed along the edge, ¢ = 1. This is evidenced by
the fact that displacement normal to the edge, £ = 1, is equal to zero.
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Fig. 6. Vibratory displacement pattern for first fully symmetric mode of square plate with designation SS2-C-SS2-C.

Finally, boundary conditions related to the mode shape of Fig. 6 (the SS2-C-SS2-C plate) differ from those
of the plate of Fig. 4 only in connection with the class SS2 conditions imposed along the edge, ¢ = 1. It is seen
that displacement normal to this edge is again zero.

4. Discussion and conclusions

Exact solutions have been obtained in an orderly fashion for the free in-plane vibration eigenvalues and
mode shapes of two families of rectangular plates, each with a pair of opposite edges simply supported. The
two distinct classes of simple support are clearly defined. It is pointed out that they have a counterpart in the
well known simple support conditions utilized in rectangular plate free lateral vibration analysis. The major
difference is that in in-plane vibration there exists two distinct edge condition formulations which are
considered to act as simple support.

It is well known that in the study of rectangular plate free lateral vibration exact solutions can be obtained
for a vast array of problems provided one pair of opposite edges are given what is referred to as simple
support. It is shown here that a vast array of exact solutions can also be obtained for rectangular plate in-
plane free vibration provided one pair of opposite edges are given what is referred to here as simple edge
support. However, here there are two distinct simple support edge condition formulations, each of which leads
to a vast array of exact solutions.

The present study has been limited to plates, where non-simply supported edges are each free or are given
clamped edge support. It will be obvious to the reader that exact solutions can be obtained for many other
combinations of support enforced along these latter edges. Furthermore, plates with combinations of the two
classes of simple support discussed here can be analyzed. This represents future work for investigators.

To the author’s knowledge the present study represents the first thorough and orderly attempt to classify
these simple support boundary conditions. It has been shown that exact solutions are obtained for the in-plane
vibration of rectangular plates with either of these classes of simple support acting along a pair of opposite
edges. The work presented here is expected to provide further insight into the overall subject of free in-plane
vibration of rectangular plates.
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Appendix A. Plates with type SS1 boundary conditions
A.1. Fully antisymmetric modes

Again we turn to Ref. [5] and focus on the series utilized in this earlier paper to analyze fully antisymmetric
modes. Taking a single term from this series we have

2m — )ré

V(& n) = Vi(n)cos 5

(A.1)

and

2m — Dn¢

Un(&n) = Uy(n)sin 3

(A.2)

where m takes on the values 1,2, 3, etc.

It is easily verified that the above trigonometric functions satisfy exactly all the conditions at their
extremities as required by the problem presently under investigation.

Substituting the above expressions in the governing differential equations we again arrive at Egs. (5) and (6)
of the main text. Now the quantity EMP = (2m — 1)n/2. The coefficients appearing in these equations are
unchanged with the exception of b,,, which must now be replaced by its negative.

A differential equation governing the quantity, V,,(r), identical in form to Eq. (7), is now obtained with the
same expressions for the quantities » and ¢. The same three possible forms of solution for V,,(n) as given by
Egs. (8)—(10) are therefore applicable. Of course, this time terms symmetric about the £-axis must be deleted.
Quantities U,,(n) are obtained in the manner described earlier. This leads to the following results.

Case 1: Solution 1 applicable.

V() = Ay, sinh f,,n + Cp, sin y,,17 (A.3)
and
U,,(n) = Apoiyy cosh f,,n + Cpotsp, cOS y,,1, (A4)
where i = B[t @ B2, + dmi o = bt b)) Cont b A0A 03 = =7, [t @2y, + et Cn — Bt B/ Cont .-
(1) Plate with free edges.
V() = Am[sinh B,,n + 01, sin p,,1] (A.5)
and
Unn(n) = Aplorm cosh B,,n + 01,03, oS y,,1], (A.6)
with
0., — [a1mf,, — GPEMP] Siflh B
(%37, + PEMP]siny,,
and

B
011 = {%” + vEMPoclm} cosh f3,,, + 01, [%” + vEMPocgm] COS Y,

(2) Plate with clamped edges.
Displacements are given by Egs. (A.5) and (A.6):

o, cosh B,
03, COS ym

Blm = -

and 01, = sinh f8,, 4+ 0y, siny,,,.
Case 2: Solution 2 applicable.

Vin(n) = Ap sin f,n + Cyysiny,,n (A7)
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and
Unn() = Amtim €08 B,n + Cin0t3 COS Y115
where oy, = —/3,,1[a,,11a,,12ﬂ,2n — a1 Cnp + b b/ € b and
G = — Yl 2V, — At Coz + Byt Bnd]/ €t B
(1) Plate with free edges.
Vin(n) = Amlsin B,n + 01 siny,n]

and
Um(’l) = Aﬂl[alm cos ﬁmn + 91”1“3”1 cos Vm”l]»
with
91 [ [aliﬂ[))]’ﬂ + d)EMP] Sin le
"7 [y + GEMP]siny,,
and
= B Ym
Oy1m = E + vEMPuay,, | cos f,, + 01 E + vEMPuas3,, | cosy,,.

(2) Plate with clamped edges.
Displacements are given by Egs. (A.9) and (A.10):

%1m COS :Bm
03m COS Yy

glmz_

and
011m = sin B, + 01, siny,,,.
Case 3: Solution 3 applicable.
Vim(n) = Ay sinh 1 + Cp, sinhy,,n
and

Um('/l) = Amfxlm COSh ﬂmr’ + Cm”Sm COSh %11’77

151

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

2 ) . _ 2 ) ]
where Uim = Bm[amlanﬁﬁm + a2 — bmlbm2]/(/mlme and 03 = Vm[amlanﬂym + amiCm2 — bn11bn12]/(4111bn12~

(1) Plate with free edges.
Vin(n) = Am[sinh B,,n + 01, sinh y,,7]

and
Un() = Ap[otim cosh B, + O1motzm cosh ],
with
0y, = — [e1mB,,, — GPEMP] s%nh B
[23m7,, + PEMP]sinhy,,
and
O1im = {% + vEMPozlm} cosh f3,, + 01, {% + vEMPoc3m} coshy,,.

(2) Plate with clamped edges.
Displacements are given by Egs. (A.13) and (A.14):

O1m = —otm cosh B, /(03 cosh p,,)

(A.13)

(A.14)
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and

011» = sinh B, + 0y, sinhy,,.

A.2. Modes symmetric about £-axis and antisymmetric about n-axis

It will be obvious that analysis of modes of this family differs from that of the antisymmetric—antisymmetric
mode analysis just described, only in that now expressions for the displacement V(1) must be symmetric with
respect to the &-axis. Solutions obtained are as follows.

Case 1: Solution 1 applicable.

Vu(n) = By, cosh B,,n + Dy, cosy,,n (A.15)
and
U,(n) = By, sinh B, + Cyp0ap, siny,,n, (A.16)

2
where 0om = ,Bm[amlamZﬁm + Am1Cm2 — bn1lbn12]/cmlme and Olgm = Vm[amlan72y,271 — An1Cm2 + bmlbm2]/cm1bm2-
(1) Plate with free edges.

V() = By[cosh B,n + 01, cos y,,n] (A.17)
and
Un(n) = B[om sinh B,,n + 0104, sin y,,n], (A.18)
with
0, — — [02m B,y — GEMP]cosh 5,
[%4my,, — PEMP]cos y,,
and

01100 = {% + vEMPoczm} sinh B, — Oum [% - vEMPoc4m] siny,,.

(2) Plate with clamped edges.
Displacements are given by Egs. (A.17) and (A.18):

Oom sinh ﬁm

glm - - p
Ol4p SINY,,
and 01, = cosh 8, + 01, cosy,,.
Case 2: Solution 2 applicable.
Vm(n) = Bm Cos ﬁmn + Dm COS Y, (A 19)
and
Um(n) = BmO(Zm sin ﬁmrl + Cmoc4m sin Yl (A20)

where oo = B, [dmiana By — dmi Cma + bt bu) /by and
L = Vol @m1 a2y = A1 €z + Dt B2l /Cont b
(1) Plate with free edges.
Vim(n) = By[cos B, + 01, cosy,n] (A.21)
and
Unn(n) = Bylozm sin By + O1mam $in 9,11, (A.22)
with

[e2mB,,, — GEMP] cos ,,
[OC4m'Vm - (Z)EMP] COS Yy,

Hlm = -
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and
_ _|Bm . Y .
Oyim=— ? — vEMPay,, | sin f8,, — 01, E — vEMPoy,, | siny,,.
(2) Plate with clamped edges.
Displacements are given by Eqs. (A.21) and (A.22):
0 oo Sin fi,,
Im=———""=""—"
04 SIN Y,
and 011, = cos B, + 01,4 cOSY,,,.
Case 3: Solution 3 applicable.
V() = By cosh f,,n + Dy, cosh y,,n (A.23)
and
U,n(n) = Byoo, sinh ﬁm’? + D04y, sinh Yl (A.24)

2
Where 0om = ﬂm[amlamZﬁm + am1 Cm2 — bmlme]/leme and Olgm = Vm[amlanﬂyzn + Am1 Cm2 — bmlbi712]/cmlbm2'
(1) Plate with free edges.

V() = By[cosh B,,n + 01, cosh y,,n] (A.25)
and
U,(n) = By[oan sinh B,n + 01,004, sinh y,,1], (A.26)
with
0, — — [Oc2m,8m - ¢EMP] cosh Bm
" [oam)m — PEMP]coshy,,
and
011 = {[;" n vEMPoczm} sinh B, + Oy m + vEMPa4m} sinhy,,.
(2) Plate with clamped edges.
Displacements are given by Eqgs. (A.25) and (A.26):
oom Sinh 8,
Om=——"—"7"
Ol SInh y,,

and 0yy,, = cosh f,, + 01, cosh y,,.

A.3. Modes symmetric about the n-axis and antisymmetric about the &-axis

Analysis of modes of this family differs from that of fully symmetric modes discussed earlier only in that
expressions for the displacement V() must now be antisymmetric with respect to the £-axis. Solutions are as
follows. For m>1:

Case 1: Solution 1 applicable.

V() = Ay sinh §,n + Cpysiny,n (A.27)
and
Un(n) = Apnoiim, cosh f,,n + Cpoizm, cOS7y,1, (A.28)
where o1, = B (@1 @By 4 @i Cma — Dt bp) /Co bz A 03 = =7, (A1 @22, + @t Cmz — Bint by2) /ot B

(1) Plate with free edges.
Vin(n) = Ap[sinh 5,1 + 01y siny,,n] (A.29)
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and
Um(rl) = Am[(xlm cosh ﬁmn + 01m“3m COosS Vm”]:
with
_ [1mPB,, + QEMP]sinh 8,
= [O(3l71ym - ¢EMP] sin Ym
and
011 = {%” — vEMPoclm} cosh 3, + 01, [% — VEMPOC3m:| COS Y,
(2) Plate with clamped edges.
Displacements are given by Egs. (A.29) and (A.30):
Olim cosh ﬁm
Oy = — b
03, COS Yy,

and 01, = sinh f8,, 4+ 0y, siny,,,.
Case 2: Solution 2 applicable.

Vi) = A sin 1 + ¢ siny,,n
and

Um(’/l) = Am(xlm cos .Bm’/l + Cmfx3m COS VM,

2 2
where Am = _ﬂm(amlamZ,Bm + Am1Cm2 — bmlme)/lebnﬂ and 3m = _'ym(amlamZVm + am1Cm2 —

(1) Plate with free edges.

(A.30)

(A.31)

(A.32)

bmlbi712)/cl711bl712'

Vin(n) = Ap[sin B, + 01 siny,,n] (A.33)
and
Um(’/]) = Am[alm Cos ﬁm’/] + 01111053111 cos Vm’?]y (A34)
with
0, —= _ [(xl}’Hﬁm - d)EMP] sin ﬁm
= [053m'))m - ¢EMP] sin Tm
and
- {%’" + vEMPoclm] cos B, + O {% - vEMPoc3,,1} cos 7,
(2) Plate with clamped edges.
Displacements are given by Eqs. (A.33) and (A.34):
0, — 01 €OS fB,,,
003 COS Y,y
and 0yy,, = sin f,,, + 01, sin y,,,.
Case 3: Solution 3 applicable.
Vm(”]) = Am sinh ﬁm"] + Cm sinh YN (A35)
and
Un(n) = Ao, cosh f,,n + Cposy, coshy,,n, (A.36)
Where Am = _ﬁm(amlanﬂﬁfn + Am1Cm2 — bmlbm2)/cmlbn12 and 03m = Vm(amlamZ'an + Am1Cm2 — bmlbm2)/cm1bm2c
(1) Plate with free edges.
Vm(’l) = Am[SIHh ﬁmn + 91177 Sil’lh an] (A37)
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and
U,,(n) = Aylo, cosh B,,n + 01,03, coshy, ], (A.38)
with
0, — [21mB,,, + GEMP]sinh §,,
" [Ofsm“/m + ¢EMP] sinh Tm
and
011 = {% - vEMPalm} cosh f3,, + 01, {% — vEMPoqm} coshy,,.

(2) Plate with clamped edges.
Displacements are given by Egs. (A.37) and (A.38):

o, cosh B,

Hlm = - h
o3, COSD Y,

and 0y, = sinh 8, + 0y, sinh y,,,.
Next, the one-dimensional mode (m = 1). Again, the solution for displacement U(y) is as given by Eq. (25).
In view of the antisymmetry of displacement with respect to the ¢-axis, as discussed earlier, we have

U(n) = Bcosay. (A.39)
Enforcing the condition of shear stress along the edge, # = 1, we obtain
Bsinon|,—; =0 (A.40)
and hence, o = n,2n,...,nn, n=1,2,..., etc., with associated eigenvalues given by
2% = nnfaes]'?/ . (A41)

Exact solutions for the one-dimensional mode shapes and associated eigenvalues of the plate with free edges
is therefore provided by Egs. (A.39) and (A.41).

For the plate with clamped edges a condition of zero displacement along the edge, n = 1, leads to the
equation

Bcosoan|,=; = 0. (A.42)
We therefore have o = 7/2,3n/2,...,2n — Dn/2, n=1,2,..., etc., and hence,
22 = Q2n — Dn/2aes]'? /¢ (A.43)

Eqgs. (A.39) and (A.43) provide mode shape and eigenvalues for the plate with clamped edges.

Appendix B. Plates with type SS2 boundary conditions
B.1. Fully antisymmetric modes

Again we turn to Ref. [4] and focus on the series utilized in this earlier paper to analyze fully antisymmetric
modes. Taking a single term from this series we have

U(&,n) = Up(n) sinmn (B.1)

and

V(& n) = V() cosmng, (B.2)

with m =0, 1, 2, etc.
We begin by considering terms with m > 1. It is easily verified that the above trigonometric functions satisfy
all of the conditions at their extremities as required by the problem under investigation.



156 D.J. Gorman | Journal of Sound and Vibration 294 (2006) 131-161

Substituting the above equations we again arrive at Egs. (5) and (6). Now the quantity EMP equals mn.
Coefficients appearing in these equations are unchanged with the exception of b,,; and b,,; which must be
replaced by their negatives.

A differential equation governing the quantity V,,(y), identical to Eq. (7), is now obtained with the
same expressions for quantities b and c¢. The same three possible forms of solution for V() as given by
Eqgs. (8)—(10) are applicable. This time terms symmetric about the ¢-axis must be deleted and quantities U,,(1)
are obtained as described earlier. This leads to the following results.

Case 1: Solution 1 applicable.

V() = A sinh B,n + Cpsiny,n (B.3)
and
Un(n) = Aoy, cosh f,,n + Cpotzy, cOSYy,,1, (B.4)
where @iy = By (@m1 @B + Gt Conz — Byt b))/ ot bz a0d 03 = 7, (A1 A2 2, — A1 o2+ Dyt By2) | ot .-
(1) Plate with free edges.
V() = Aplsinh B,,n + 01, siny,,n] (B.5)
and
U,n(n) = Aploam cosh B,n + 01,03, cosy,,.n], (B.6)
with
0. — _[2mb, — GEMPIsinhj,
[23m7,, + PEMP]siny,,
and
O1im = {% + vEMchlm} cosh f3,,, + 01, [%" + vEMPocgm] COS Y,

(2) Plate with clamped edges.
Displacements are given by Egs. (B.5) and (B.6):

o, cosh B,

Oy = —
O3 COS Yy,
and 01, = sinh f8,, 4+ 0y, siny,,,.
Case 2: Solution 2 applicable.
V() = Ap sin B,n + Cpsiny,,n (B.7)
and
Un(n) = Aoy, cos B, + Cmoszm COS Y1, (B.8)
where o1, = — B, (@1 @By — At Ema + Bt Ba) / ot bz and 03, = —7,0 (A1 G2 )2, — @t Conz + Bt Byd) [ €t b
(1) Plate with free edges.
Vin(n) = Awlsin B0 + 01y siny,, ] (B.9)
and
U,(n) = Aplotim cos B, + 01030, €08 y,,1], (B.10)
with

_ [OC]mﬁm + ¢EMP] sin ﬁm
[%3m7,, + PEMP]sin y,,

le =
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and

O011m = {% + vEMchlm} cos f,, + O1im [% + vEMPac\;m} COS Y,y

(2) Plate with clamped edges.
Displacements are given by Egs. (B.9) and (B.10):

6 _ O1m COS ﬁm
m=————""""
%3, COS Y,y
and 011, = sin f3,,, + 01, siny,,,.
Case 3: Solution 3 applicable
Viu(n) = Ay sinh B,n + Cy, sinhy,n (B.11)
and
Un(n) = Ao, cosh f,,n + Cposy, coshy,,m, (B.12)

where Am = Bm(amlai712ﬁi1 + amicm2 — bmlme)/leme and A3m = '))m(amlainZV,zn + amiCmp — bmlbm2)/cmlbm2-
(1) Plate with free edges.

V() = Am[sinh B,,n + 01, sinh y,,n] (B.13)
and
U,(n) = Apyloym cosh B, + 01,03, cosh y,,1], (B.14)
with
0y, = — [e1mB,,, — YEMP] s%nh B
[23m7,, — PEMP]sinhy,,
and
O11m = {% + vEMPoclm} cosh f3,, + 01, {% + vEMPogm} coshy,,.

(2) Plate with clamped edges.
Displacements are given by Egs. (B.13) and (B.14):
o cosh f,,

Glm = - h
o3, cosny,,

and 011, = sinh f8,,, + 01,, sinh y,,,.
Next, the one-dimensional case (m = 0). Returning to Egs. (B.1) and (B.2) it is seen that for this mode only
the quantity V,,(n) will be non-zero. The governing differential equation becomes

V() + o2 V() = 0, (B.15)

where o = 2*¢? /ay;.
Deleting the term of the solution (Eq. (25)) antisymmetric about the £-axis from the solution to Eq. (B.15)
we are left with

V() = Asinay. (B.16)
Enforcing the condition of zero stress normal to the edge, n = 1, we obtain the requirement
Acosan|,—; =0, (B.17)
from which we obtain « = n/2,3n/2,...,(2n — )n/2, n = 1,2,3, etc., hence the eigenvalues are
, T
2 =@n—1Dzlan]"?/¢. (B.18)

Exact mode shapes and eigenvalues for this family of modes are therefore available from Egs. (B.16) and (B.18).
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For the case of clamped edges, enforcing a condition of zero displacement normal to the edge, n = 1, we
obtain
Asinonl,—; =0 (B.19)
and therefore, o = 7, 2n, 3%, ... nn, n = 1,2, 3, etc. Eigenvalues are expressed as

2% = nnfa;]'?/¢. (B.20)

B.2. Modes symmetric about the &-axis and antisymmetric about the n-axis

Analysis of this mode family differs from that of antisymmetric-antisymmetric modes just described only in
that now displacement V() must be symmetric with respect to the £-axis. Solutions obtained are as follows.

First, terms for which m>1 are considered.

Case 1: Solution 1 applicable.

V() = By, cosh f,,n + Dy, cosy,n (B.21)
and
U,,(n) = By, sinh B,,n + Dyy04p, siny,,n, (B.22)

where Oom = ﬁm(amlawﬂﬁ/zn + amicm2 — bmlbm2)/cmlbn12 and o4 = Vm(amlamﬂf; — Am1Cm2 + bmlme)/cmlme~
(1) Plate with free edges.

V() = By[cosh B,,n + 01,, cos y,,n] (B.23)
and
Unn(n) = Bu[otzm sinh 1 + 0104 siny,, 1], (B.24)
with
6, — — loomPm + PEMP]cosh f3,,
[e4mym + PEMP] cos y,,
and

011 = ['%’ + vEMPocz,n} sinh 8, — 01, [%" + vEMPoum] siny,,,.

(2) Plate with clamped edges.
Displacements are given by Egs. (B.23) and (B.24):

o, sinh B,

glm = B
U4y SIN Yy,
and 0y, = cosh f8,,, + 01, cosy,,.
Case 2: Solution 2 applicable.
VWI(n) = Bm Ccos ﬁmﬂ + Dm COS Yy, (B25)
and
Un(n) = Byooy sin f,,1 + D04, siny,, 1, (B.26)

Where 0om = ﬂm(amlanﬂﬂfn — Am1Cm2 + bmlbm2)/cm1bm2a Ol4m = Vm(amlamf/fn — A1 Cm2 + bmlme)/lebm2~
(1) Plate with free edges.

Vin() = Bul[cos B, + 01 cO8 7,,1] (B.27)
and

U,,(n) = Byloom sin B, + 010, siny,,nl, (B.28)
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with
. [OCZmﬁm + d)EMP] COS ﬁm

0 m =
1 [u4m7)m + ¢EMP] COS Yy

and

011 = — {% + vEMPozzm} sin f3,,, — O, {% + vEMPoc4m] siny,,.

(2) Plate with clamped edges.
Displacements are given by Egs. (B.27) and (B.28):

0, = 0om sin ﬁm
Im= -
Olam SN Yy,
and 0y, = cos f,, + 01, cosv,,.
Case 3: Solution 3 applicable.
V() = By cosh 3,1 + Dy, coshy,,n (B.29)
and
U,,(n) = By, sinh B,n + D, 04y, sinh p,,4, (B.30)

where Oom = ﬂm(amlamZﬁi + dmiCm2 — bmlme)/leme and Olgm = Vm(amlamZV51 + amiCm — bmlme)/leme~
(1) Plate with free edges.

Vm(n) = By[cosh B,,n + 61, coshy,, 7] (B.31)
and
U,,(n) = Byoom, sinh B, + 01,04, sinh y, 1], (B.32)
with
0, — — [eomB,, + PEMP]cosh f,,
[c4y,, + GEMP] coshy,,
and

Im = |———V 0o | SIN + 0 |——vV O | SInh 7y, .
0 [j;" EMPus,, | sinh §,, + 0 V(Z’ EMPay,, | sinhy,,

(2) Plate with clamped edges.
Displacements are given by Egs. (B.31) and (B.32):
oy sinh 8,
glﬂl = - 1
Ol4m sinhy,,
and 6yy,, = cosh f,, + 01, coshy,,.
Next, the one-dimensional problem (m = 0). Returning to Eq. (B.15) and deleting the term antisymmetric
about the £-axis we obtain

V(n) = Bcosan. (B.33)
Enforcing the condition of zero normal stress along the edge, # = 1, we obtain
Bsinonl|,_; =0, (B.34)
from which we obtain, o = n,27,3n...nn etc., n=1,2,3.... Eigenvalues are therefore given by the
expression
2 = nnfai]'?/¢. (B.35)

Exact mode shapes and eigenvalues for one-dimensional modes of the plate with free edges are therefore
given by Egs. (B.33) and (B.35).
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Returning to Eq. (B.33) and enforcing the condition of zero displacement normal to the edge, n = 1, we
obtain the equation
Bcosanl,—; =0, (B.36)

from which we obtain o ==n/2,3n/2,...(2n— )n/2, etc., n=1,2,3. Eigenvalues for this mode family
therefore become

, i
2 =@n—1Dzlan]"?/¢. (B.37)
Exact mode shapes and eigenvalues for one-dimensional modes of the plate with clamped edges are

therefore given by Eqgs. (B.33) and (B.37).

B.3. Modes symmetric about the n-axis and antisymmetric about the &-axis

Analysis of modes of this family differs from that of fully symmetric modes discussed earlier only in that
expressions for the displacement V(1) must be antisymmetric with respect to the ¢-axis. Solutions are as
follows.

Case 1: Solution 1 applicable.

Viu(n) = Ay sinh f,n + Cp,siny,n (B.38)
and
U,(n) = Apoy, cosh f,,n + Cposp, OS Y1, (B.39)
where o1, = B (dm1 @22+ Qi Co — Byt bud) /1 bz AN 030 = =, (A1 A2 2, — Aot Cni2 A Bt D) | ot .
(1) Plate with free edges.
V() = Ap[sinh B,,n + 01, siny,,n] (B.40)
and
Un(n) = Aplorm cosh B, + 01,03, cos y,,1], (B.41)
with
[et1mB,,, + GEMP]sinh §,,
" o3y — GEMP]siny,,
and

Gllm = |:% — VEMPO(lm:| cosh ﬂm + Hlm [% - VEMPO‘3m:| COS Y-

(2) Plate with clamped edges.
Displacements are given by Eqgs. (B.40) and (B.41):

oy cosh B,

Glm = -
03, COS Yy,

and 01, = sinh 8, + 01, sin y,,,.

Case 2: Solution 2 applicable.
VM(’?) = Am sin ﬁmn + Cn sin Yml (B42)

and

Un?(’/’) = Aoy COS ﬂmrl + Cpotzm COS YmM> (B43)
where Aim = _ﬂm(amlanﬂﬁfn — am1Cp2 + bmlme)/leme and A3m = _'Vm(amlamﬂ)fn — am1Cm2 + bmlbm2)/cmlbm2~

(1) Plate with free edges.
Vin(n) = Amlsin B, + 01 sin y, 1] (B.44)
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and
U,(n) = Aploin cos B, + 0103, cOS ,,1], (B.45)
with
0,, = — [oimp,, — GEMP] s%n B
[¢37,, — GPEMP]siny,,
and
011 = [%’" - vEMPoclm} c0s B, + O1m {%" - vEMPocgm} cos7,,.

(2) Plate with clamped edges.
Displacements are given by Egs. (B.44) and (B.45):

O1m COS ﬁm

Glm = -
o3, COS Y,y
and 0,1, = sin f3,, + 0y, siny,,,.
Case 3: Solution 3 applicable.
VM(n) = Am sinh ﬁmn + Cm sinh Yl (B46)
and
Um('/l) = Am‘xlm cosh erl + CmOC3m cosh Ymlls (B47)

Where Am = ﬁm(amlamZﬁ; + Am1Cm2 — bmlbm2)/cmlbm2 and 3m = Vm(amlamﬂ/fn + Am1Cm2 — bmlme)/leme-
(1) Plate with free edges.

V() = Ap[sinh f,,n + 0y, sinh y,,1] (B.43)
and
Un(n) = Amlotrm cosh B,n + 01,23, cosh y,n], (B.49)
with
0, — [(xlmﬁm + (zbEMP] sinh ﬁm
" T (eamy,, + EMP]sinhy,,
and
O1im = {% — vEMPoclm} cosh 5, + 01 {%” - vEMPoc3m} coshy,,.

(2) Plate with clamped edges.
Displacements are given by Egs. (B.48) and (B.49):

o, cosh B,

Hlm = - h
o3, cosny,,

and 0y, = sinh f§,, + 0y, sinh y,,,.
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