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Abstract

Two distinct types of simple support boundary conditions are formulated for rectangular plates undergoing in-plane free

vibration. Each type of simple support is shown to be analogous to the well known simple support edge conditions

encountered in the free transverse vibration analysis of rectangular plates. It is shown that exact solutions may be obtained

for plate free vibration eigenvalues and mode shapes when two opposite plate edges are given either type of simple support,

the other two edges being given any combination of classical edge conditions. A complete analysis is provided for plate in-

plane vibration with pairs of clamped or free edge conditions imposed on the non-simply supported boundaries and exact

eigenvalues are tabulated for a large range of plate aspect ratios. This appears to be the first thorough study of these in-

plane vibration problems with exact solutions.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that a vast literature exists pertaining to the free lateral vibration of rectangular plates. The
situation with regard to the free in-plane vibration of the same plates is quite different. Only a relatively small
number of publications have been devoted to this latter subject over the years. This is no doubt due in part to
the fact that plate in-plane vibration generally involves much higher natural frequencies which are considered
to be beyond the level of available excitation forces. Nevertheless, it is found that in the case of plates
subjected to tangential fluid boundary flow, such as on the hulls of ocean-going ships, for example, plate in-
plane vibration can be excited. There can also be an interrelation between this in-plane vibration and
associated acoustic effects, with generation of noise in the immediate environment. There is therefore a strong
incentive to gain an understanding of the entire subject of in-plane plate vibration and the mathematical
modeling of such phenomena.

A significant contribution to the subject of rectangular plate in-plane vibration was made by Bardell et al. in
1996 [1]. They also made a valuable survey of much of the related literature available up to that time. In
particular, they referred to the pioneering work of Lord Rayleigh dealing with what was referred to as ‘simply
supported’ plates [2].
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

a; b quarter-plate edge lengths
a11 ¼ 1:0
a12 ¼ n
a66 ¼ ð1� nÞ=2
E Young’s modulus of plate material
u; v plate displacements in x and Z direc-

tions, respectively
U ;V dimensionless displacements, U ¼ u=a,

V ¼ v=b

x; y quarter-plate rectangular coordinates
x; Z dimensionless coordinates, x ¼

x=a; Z ¼ y=b

f plate aspect ratio b=a

fj inverse of plate aspect ratio
s�x;s

�
y; t
�
xy dimensionless in-plane normal and

shear stresses, defined in text
o circular frequency of plate vibration
r mass density of plate material
n Poisson ratio of plate material taken

here as 0.3
l2 dimensionless frequency of plate vibra-

tion, l2 ¼ oa½rð1� n2Þ=E�1=2

l2b alternate formulation of dimensionless
frequency, l2b ¼ ob½rð1� n2Þ=E�1=2
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The work undertaken in the present paper is in many respects a counterpart of that undertaken much earlier
by Leissa in connection with the free lateral vibration of rectangular plates [3]. In Leissa’s paper it was shown
that, for rectangular plates with a pair of opposite edges simply supported, exact solutions are obtained for all
possible combinations of classical boundary conditions along the other edges.

In the present paper it is demonstrated, in a parallel fashion, that for in-plane vibration there exists two
distinct classes of ‘simple support’ edge conditions. It is further shown that for any rectangular plate, with a
pair of opposite edges given either of the above classes of simple support, exact free vibration solutions may be
obtained for any combination of classical boundary conditions enforced along the remaining edges. Exact
eigenvalues and mode shape information are presented for plates with a pair of opposite edges given either of
the two classes of simple support and the non-simply supported edges being either free or clamped.
2. Mathematical procedure

2.1. The dimensionless equilibrium equations and in-plane stress formulations

The governing dynamic equilibrium equations for the in-plane problem were developed in dimensionless
form in Ref. [4]. They are reproduced here for the sake of completeness only. They are,

a11
q2U

qx2
þ

a12

f
q2V
qxqZ

þ
a66

f
q2V

qxqZ
þ

1:

f
q2U
qZ2

� �
þ l4U ¼ 0 (1)

and

a66
q2V

qx2
þ

1:

f
q2U

qxqZ

� �
þ

a12

f
q2U
qZqx

þ
a11

f2

q2V
qZ2
þ l4V ¼ 0. (2)

All of the symbols are as defined in the nomenclature with sign conventions as indicated in Fig. 1. The
dimensionless frequency is designated by the symbol, l2, where l2 ¼ oa

p
rð1� n2Þ=E.

It was also shown in Ref. [4] that in-plane normal and shear stresses are expressed in dimensionless
form as
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þ
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f
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u
f
qV

qZ
; t�xy ¼
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qZ
þ f

qV

qx
.
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Fig. 1. Schematic view of typical rectangular plate with central coordinate axes.
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2.2. The two classes of simple support boundary conditions

It will be recalled that in the study of rectangular plate free lateral vibration a simply supported edge is
characterized by the fact that lateral displacement along the edge is forbidden and the same edge is free of
bending moment. Such edges are often referred to as ‘pinned’ edges.

In examining the free lateral vibration of rectangular plates with two opposite edges simply supported the
analyst is presented with an immediate significant advantage. The plate vibratory behavior may be expressed
in the form of a solution with trigonometric sine functions running between the simply supported edges. This
is because each term in the solution satisfies exactly the prescribed simple support edge conditions. This being
the case, no series summations are required and exact solutions for the eigenvalues and free vibration mode
shapes associated with any number of half sine waves running across the plate are immediately achievable.
This is so, provided the other boundary conditions are of the classical (simply supported, clamped, free) type.

This form of solution is often referred to as a Levy type solution, or Voight solution. Voight was the first to
replace the static surface loading with the inertia (body) force for the purposes of free vibration analysis. Such
solutions will be referred to in this paper as Voight solutions.

It is well known that three categories of classical boundary conditions exist for rectangular plate lateral
vibration as well as static problems. These are clamped, free, and simply supported boundary conditions. A
completely analogous set of boundary conditions, also known as clamped, free, and simply supported, also
exist for rectangular plate in-plane vibration. Of course, the mathematical formulation of these edge
conditions is slightly different. This was recognized by Bardell et al. [1] for example, who have employed the
same terminology, as has the present author. It is again, only those plate problems where at least one pair of
opposite simply supported edges exist that exact solutions can be obtained for plate free in-plane vibration
behavior. Exact solutions for a limited number of in-plane vibration problems with simple support along all
edges were obtained by Lord Rayleigh and are referred to in Ref. [1].

It is found that in the case of in-plane rectangular plate free vibration analysis two distinct sets of ‘simple
support’ boundary conditions are physically realizable. We choose to designate these two sets of boundary
conditions by the symbols SS1, and SS2.

Edges associated with the first set, SS1, are characterized by the fact that plate displacement parallel to the
edge is forbidden as well as normal stress perpendicular to the edge.

The second set of simply supported edges are designated here by the symbol SS2. Such edges
are characterized by the fact that shear stress along the edge is forbidden as well as displacement normal
to the edge.

This latter type of boundary condition was the one designated by the term ‘simple support’ in the work of
Bardell et al. [1], and Lord Rayleigh [2].
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2.3. Analysis of plates with type SS1 boundary conditions

We will analyze the free in-plane vibration of plates of this set with two distinct types of support along the
non-simply supported edges. These latter edges will both be free, or both given clamped support.

In view of the nature of the imposed boundary conditions it will be obvious that for all problems analyzed
here the free vibration mode displacements must possess a symmetry, or antisymmetry, about the central axes
of the plate under analysis (Fig. 1). The reader will find a thorough discussion of this phenomenon in Refs.
[4,5]. Suffice it to say that here a mode is said to possess symmetry with respect to a central axis if amplitude of
displacement normal to the axis is a maximum and displacement parallel to the axis is zero. Conversely, a
mode is said to possess antisymmetry with respect to a central axis if displacement normal to the axis is zero
while amplitude of displacement parallel to the axis is a maximum. We define modes as being fully symmetric
if their displacement possesses symmetry with respect to both central axes. Conversely, modes whose motion is
antisymmetric with respect to both axes are said to be fully antisymmetric. There exists two other families of
modes. One family possesses symmetry with respect to the x-axis (Fig. 1) and antisymmetry with respect to the
Z-axis. The other family possesses symmetry with respect to the Z-axis and antisymmetry with respect to the x-
axis. These four families of modes comprise all possible modes for the plate vibration problems discussed here.
Each mode family will be analyzed separately.

It will also be observed that, provided appropriate boundary conditions are enforced, only one quarter of
the plate of interest need be analyzed [4].

One might be tempted at this point to settle for a single analysis of the entire plate with a view to obtaining
eigenvalues and mode shapes for every possible plate free vibration mode. This might seem to require less
effort than focusing on the three families of plate vibration modes separately as discussed above, through
analysis of the quarter plate. Experience has shown this latter approach to be highly preferable.

First, through separate analysis of the individual mode families, only the eigenvalues associated with the
particular family under investigation will be uncovered. The eigenvalue density will therefore be only about
one third of that which would be otherwise encountered. The probability of missing an eigenvalue is thereby
greatly reduced. Furthermore, one avoids the problem of having to contend with repeated eigenvalues.

Secondly, interpretation of the computed mode shapes with mode family separation becomes a much more
manageable task. Repeated eigenvalues were encountered for square plates in the excellent work of Bardell et
al. [1, pp. 462–463]. Had they analyzed the mode families separately, as is done here, the presence of repeated
eigenvalues, which are easily missed in the eigenvalue search, would have been avoided and it would not have
been necessary to try and identify the significance of repeated eigenvalues through mode shape studies of
related shapes.

Many of the advantages of the quarter-plate approach, where boundary conditions permit it to be exploited,
are already elaborated upon in Section 3 of Ref. [4]. The reader is encouraged to review this section. It is also
pointed out that one of the symmetric–antisymmetric modes reported by the present author appears to have
been missed in the study of Ref. [1].

For these, and a number of other reasons, the author continues with exploitation of the well established
quarter-plate approach when it is applicable such as in the present problem under study.
2.3.1. Fully symmetric modes

Referring briefly to Voight type series solutions utilized in Ref. [5], when analyzing fully symmetric modes of
fully clamped plates, and focusing on individual terms of these series, it is found that we can write for
displacements related to the quarter plate of interest (Fig. 2),

V ðx; ZÞ ¼ V mðZÞ sin mpx (3)

and

Uðx; ZÞ ¼ UmðZÞ cos mpx, (4)

where m takes on values of 0, 1, 2, etc. The case where m equals zero is a special case to which we will return
shortly.
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Fig. 2. Schematic view of quarter plate whose vibratory behavior is analyzed.
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We focus first on the case where mX1. It is important to note that all of the required boundary conditions at
the extremities of the trigonometric functions, as discussed above, are satisfied exactly by expressing the
displacements as given by Eqs. (3) and (4).

The next step in the analysis is to substitute Eqs. (3) and (4) into the governing differential equations. The
procedure is described in detail in Ref. [4]. Upon substitution, the variable x is eliminated and the governing
differential equations become

am1UkmðZÞ þ bm1V jmðZÞ þ cm1UmðZÞ ¼ 0 (5)

and

am2V
k
mðZÞ þ bm2U

j
mðZÞ þ cm2V mðZÞ ¼ 0, (6)

where

am1 ¼
a66

f2
; bm1 ¼ EMPða12 þ a66Þ=f; cm1 ¼ �a11EMPSþ l4; am2 ¼

a11

f2
,

bm2 ¼ �
EMP

f
½a66 þ a12� and cm2 ¼ l4 � a66EMPS.

Here, superscripts indicate differentiation with respect to the variable Z, and the symbols EMP and EMPS
represent the product, mp, and ðmpÞ2, respectively.

Through a simple process of differentiating, and adding and subtracting Eqs. (5) and (6), an ordinary
homogeneous differential equation involving the quantity V mðZÞ only is obtained [4]. This equation is
written as

V IV
m ðZÞ þ bV kmðZÞ þ cVmðZÞ ¼ 0, (7)

where

b ¼ ½am1cm2 � bm1bm2 þ cm1am2�=ðam1am2Þ and c ¼ cm1cm2=ðam1am2Þ.

The characteristic equation associated with Eq. (7) can be written as D4 þ bD2
þ c ¼ 0, and setting D2 ¼ � ,

we write the quadratic equation �2 þ b�þ c ¼ 0. Thus we obtain the roots �1;2 ¼ �bþ
p

b2
� 4c=2, and

�b�
p

b2
� 4c=2. Since the quantity b2

� 4cX0 for all problems encountered here, both of the above
quantities are real. Denoting �1 as root1, and �2 as root2, the exact solution for Eq. (7) is available from any
text dealing with elementary theory of differential equations and depends on whether root1, root2, etc., are
positive or negative.
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Introducing the quantities bm ¼
p
jroot1j, and gm ¼

p
jroot2j, three possible forms of solution exist for Eq.

(7). They are as follows.
Solution 1: root1X0:0; root2p0:0.

V mðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sin gmZþDm cos gmZ, (8)

where Am;Bm;X etc. are constants to be determined.
Solution 2: root1p0:0; root2p0:0.

V mðZÞ ¼ Am sin bmZþ Bm cos bmZþ Cm sin gmZþDm cos gmZ. (9)

Solution 3: root1X0:0; root2X0:0.

V mðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sinh gm ZþDm cosh gmZ. (10)

For any of the above solutions the corresponding form of solution for the quantity UmðZÞ is readily
obtained through manipulation of Eqs. (5) and (6) [4].

Turning next to enforcement of appropriate boundary conditions along the edge, Z ¼ 0, it follows that all
terms in the above solutions for VmðZÞ which are antisymmetric with respect to the x-axis must be deleted. The
final step is to enforce appropriate boundary conditions along the edge, Z ¼ 1. We proceed as follows:

Case 1: Solution 1 applicable.

V mðZÞ ¼ Bm cosh bmZþDm cos gmZ, (11)

with

UmðZÞ ¼ Bma2m sinh bmZþDma4m sin gmZ, (12)

where a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2 and a4m ¼ gm½am1am2g2m � am1cm2 þ bm1bm2�=cm1cm2.

(1) Simply supported plate with other edges free.
Here, free edge conditions must be enforced along the boundary, Z ¼ 1.
This involves enforcing conditions of zero shear stress and zero normal stress along the boundary.

Expressions for shear stress and normal stress are provided in Section 2.1.
Enforcing a condition of zero shear stress along this boundary we obtain

V mðZÞ ¼ Bm½cosh bmZþ y1m cos gmZ� (13)

and

UmðZÞ ¼ Bm½a2m sinh bmZþ y1ma4m sin gmZ�, (14)

where

y1m ¼ �
½a2mbm þ fEMP� cosh bm

½a4mgm þ fEMP� cos gm

.

Next, enforcing the condition of zero normal stress perpendicular to the boundary, Z ¼ 1, we obtain

Bmy11m ¼ 0, (15)

where

y11m ¼
bm

f
� uEMPa2m

� �
sinh bm � y1m

gm

f
þ uEMPa4m

� �
sin gm

� �
.

It will be apparent that a non-trivial solution can exist for the coefficient Bm only if the quantity y11m is equal
to zero. Accordingly, for the symmetric–symmetric modes under study, having chosen a desired value for ‘m’,
the number of half-waves in displacement V running across the quarter plate in the x direction (see Eq. (3)),
the related eigenvalues are those values of the parameter l2 which cause the quantity y11m; to vanish. Mode
shape displacements associated with any eigenvalue are obtained from Eqs. (13) and (14) by assigning an
arbitrary non-zero value to the coefficient Bm.

The simple analytical procedure described above is common to all problems solved here where the plate
undergoes two-dimensional in-plane motion. Of course, for plates with clamped edges different boundary
conditions will be enforced along the non-simply supported edges. For the remaining problems considered
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here a detailed description of the analytical procedure will therefore not be provided. Only expressions for the
plate displacements and the quantities y1m and y11m will be provided for the benefit of the reader.

(2) Simply supported plate with other edges clamped.
Enforcing the boundary conditions, displacement U equals zero, and displacement V equals zero,

respectively, along the edge, Z ¼ 1, find

y1m ¼ �
a2m sinh bm

a4m sin gm

and

y11m ¼ cosh bm þ y1m cos gm,

with displacements as given by Eqs. (13) and (14).
Case 2: Solution 2 applicable.

VmðZÞ ¼ Bm cos bmZþDm cos gmZ, (16)

with

UmðZÞ ¼ Bma2m sin bm ZþDm a4m sin gmðZÞ, (17)

where

a2m ¼ bm½am1am2b
2
m � am1cm2 þ bm1bm2�=cm1bm2

and

a4m ¼ gm½am1am2g2m � am1cm2 þ bm1bm2�=cm1bm2.

(1) Simply supported plate with other edges free.

VmðZÞ ¼ Bm½cos bmZþ y1m cos gmZ� (18)

and

UmðZÞ ¼ Bm½a2m sin bmZþ y1ma4m sin gmZ�, (19)

where

y1m ¼ �
½a2mbm þ fEMP� cos bm

½a4mgm þ fEMP� cos gm

and

y11m ¼ �
bm

f
þ uEMPa2m

� �
sin bm � y1m

gm

f
þ uEMPa4m

� �
sin gm.

(2) Simply supported plate with other edges clamped.
Displacements as given by Eqs. (18) and (19) with

y1m ¼ �
a2m sin bm

a4m sin gm

; y11m ¼ cos bm þ y1m cos gm.

Case 3: Solution 3 applicable.

VmðZÞ ¼ Bm cosh bmZþDm cosh gmZ, (20)

with

UmðZÞ ¼ Bma2m sinh bmZþDma4m sinh gmZ, (21)

where a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2 and a4m ¼ gm½am1am2g2m þ am1cm2 � bm1bm2�=cm1bm2.

(1) Simply supported plate with other edges free.

VmðZÞ ¼ Bm½cosh bmZþ y1m cosh gmZ� (22)
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and

UmðZÞ ¼ Bm½a2m sinh bmZþ y1ma4m sinh gmZ�, (23)

where

y1m ¼ �
½a2mbm þ fEMP� cosh bm

½a4mgm þ fEMP� cosh gm

and

y11m ¼
bm

f
� uEMPa2m

� �
sinh bm þ y1m

gm

f
� uEMPa4m

� �
sinh gm.

(2) Simply supported plate with other edges clamped.
Displacements as given by Eqs. (22) and (23) with

y1m ¼ �
a2m sinh bm

a4m sinh gm

and y11m ¼ cosh bm þ y1m cosh gm.
Finally, we must examine the one-dimensional mode ðm ¼ 0Þ. Returning to Eqs. (3) and (4) it is seen that for

this mode displacement V will be zero and displacement U will be a function of Z, only. Examining the
governing differential equations it is found that only one differential equation, in revised form, is applicable
and it may be written as

q2UðZÞ
qZ2

þ a2UðZÞ ¼ 0, (24)

where UðZÞ represents plate in-plane displacement and

a2 ¼ l4f2=a66.

The solution for Eq. (24) is well known and is expressed as

UðZÞ ¼ A sin aZþ B cos aZ, (25)

where A and B are constants to be determined.
In view of the antisymmetry of displacement UðZÞ about the x axis the constant B must be set equal to zero.

We are therefore left with the equation

UðZÞ ¼ A sin aZ. (26)

For the case of free boundaries a condition of zero shear stress must be imposed along the edge, Z ¼ 1. We
therefore write

Aa cos aZjZ¼1 ¼ 0. (27)

A non-zero solution for the quantity A is possible only if we impose the condition

a ¼
p
2
;
3p
2
; . . . ; ð2n� 1Þ

p
2
; etc.

Using our expression for a we obtain

l2 ¼ ð2n� 1Þ
p
2
½a66�

1=2=f. (28)

Exact eigenvalues (l2) for this one-dimensional mode family are therefore provided explicitly by Eq. (28),
and associated mode shapes are provided by Eq. (26) where any arbitrary value may be assigned to the
constant A.

For the case of clamped edge conditions a condition of zero displacement parallel to the edge, Z ¼ 1, must
be imposed.
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Returning to Eq. (26) we see that the quantity a must take on values of

a ¼ p; 2p; . . . ; np; n ¼ 1; 2; . . . etc.

This leads to the expression

l2 ¼ np½a66�
1=2=f. (29)

Here, exact eigenvalues, l2, are obtained from Eq. (29) with mode shapes provided by Eq. (26).
An analysis for antisymmetric and symmetric–antisymmetric modes of this set is provided in Appendix A.
2.4. Analysis of plates with type SS2 boundary conditions

The analysis to follow differs only slightly from that already described in detail for plates with SS1 type
simple supports. Accordingly, in what is to follow, only the differences in analytical procedure required to take
care of this alternative type of simple edge support will be elaborated upon.
2.4.1. Fully symmetric modes

Here we refer to Voight type solutions utilized in Ref. [4] when analyzing fully symmetric in-plane modes of
the completely free plate. Focusing on individual terms of the series employed we write

V ðx; ZÞ ¼ VmðZÞ sin
ð2m� 1Þpx

2
(30)

and

Uðx; ZÞ ¼ UmðZÞ cos
ð2m� 1Þpx

2
, (31)

where m ¼ 1; 2; . . . etc.
It is easily shown that the SS2 boundary conditions are satisfied along the edge, x ¼ 1, as well as the

conditions of symmetry required along the Z-axis, by the above trigonometric functions.
Substituting the above expressions for displacements U and V into the governing differential equations we

again obtain Eqs. (5) and (6), with the same constants am1; bm1, etc. Here the quantity EMP equals
ð2m� 1Þp=2. Again, manipulating Eqs. (5) and (6) we obtain Eq. (7) with the same associated constants b and
c. Solutions are as given by Eqs. (8)–(10). It will be apparent that all terms for VmðZÞ which are antisymmetric
with respect to the x-axis must be deleted. Eigenvalues and mode shapes for the fully symmetric modes under
investigation here are obtained by following procedures identical to those discussed earlier.

Case 1: Solution 1 applicable.

V mðZÞ ¼ Bm cosh bmZþDm cos gmZ (32)

and

UmðZÞ ¼ Bma2m sinh bmZþDma4m sin gmZ, (33)

where a2m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2; a4m ¼ gmðam1am2g2m � am1cm2 � bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Bm½cosh bmZþ y1m cos gmZ� (34)

and

UmðZÞ ¼ Bm½a2m sinh bmZþ y1ma4m sin gmZ�, (35)

with

y1m ¼ �
½a2mbm þ fEMP� cosh bm

½a4mgm þ fEMP� cos gm
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and

y11m ¼
bm

f
� nEMPa2m

� �
sinh bm � y1m

gm

f
þ nEMPa4m

� �
sin gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (34) and (35):

y1m ¼ �
a2m sinh bm

a4m sin gm

and

y11m ¼ cosh bm þ y1m cos gm.

Case 2: Solution 2 applicable.

V mðZÞ ¼ Bm cos bmZþDm cos gmZ (36)

and

UmðZÞ ¼ Bma2m sin bmZþDma4m sin gmZ, (37)

where a2m ¼ bmðam1am2b
2
m � am1cm2 þ bm1bm2Þ=cm1bm2; a4m ¼ gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

VmðZÞ ¼ Bm½cos bmZþ y1m cos gmZ� (38)

and

UmðZÞ ¼ Bm½a2m sin bmZþ y1ma4m sin gmZ�, (39)

with

y1m ¼ �
½a2mbm þ fEMP� cos bm

½a4mgm þ fEMP� cos gm

and

y11m ¼ �
bm

f
þ nEMPa2m

� �
sin bm þ y1m

gm

f
þ nEMPa4m

� �
sin gm.

(1) Plate with clamped edges.
Displacements are given by Eqs. (38) and (39):

y1m ¼ �
a2m sin bm

a4m sin gm

and

y11m ¼ cos bm þ y1m cos gm.

Case 3: Solution 3 applicable.

V mðZÞ ¼ Bm cosh bmZþDm cosh gmZ (40)

and

UmðZÞ ¼ Bma2m sinh bmZþDma4m sinh gmZ, (41)

where a2m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2; a4m ¼ gmðam1am2g2m þ am1cm2 � bm1bm2Þ=cm1bm2.

(1) Plate with free edges

V mðZÞ ¼ Bm½cosh bmZþ y1m cosh gmZ� (42)

and

UmðZÞ ¼ Bm½a2m sinh bmZþ y1ma4m sinh gmZ�, (43)
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with

y1m ¼ �
½a2mbm þ fEMP� cosh bm

½a4mgm þ fEMP� cosh gm

and

y11m ¼
bm

f
� nEMPa2m

� �
sinh bm þ y1m

gm

f
� nEMPa4m

� �
sinh gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (42) and (43):

y1m ¼ �
a2m sinh bm

a4m sinh gm

and

y11m ¼ cosh bm þ y1m cosh gm.

An analysis for antisymmetric and symmetric–antisymmetric modes of this set is provided in Appendix B.
3. Presentation of computed results

The reader can, of course, easily compute exact eigenvalues and mode shapes for any plate in-plane
vibration problem among the families of problems introduced here. In the case of problems with one-
dimensional mode shapes, exact solutions are provided in the text with no computation required. Otherwise it
is only necessary to search for values of the parameter, l2, which cause the pertinent value of the quantity,
y11m, as provided herein to take on a zero value.

Nevertheless, a set of tables of limited scope, based on computed exact eigenvalues, are provided for the
benefit of the reader.
3.1. Listing of computed eigenvalues

Data related to the four distinct plate plate-boundary configurations considered here are to be found in
Tables 1–4. Following conventional notation practices each plate configuration is designated by a set of four
symbols in ordered sequence. The first symbol indicates the boundary condition enforced along the left edge of
the full plate (Fig. 1). Subsequent symbols indicate boundary conditions enforced along the remaining edges,
in order, as we move counter clockwise around the plate. For example, the designation, SS1-F-SS1-F indicates
a plate with two opposite edges given SS1 type edge support, the other two edges being free. The designation
SS1-C-SS1-C differs from that immediately above only in that free edges are replaced by edges with clamped
support. Of course, there will be two other mode families where the SS1 edge conditions will be replaced by
edge conditions of the type SS2. The nature of these two types of edge support were explained in detail earlier.

Examining the eigenvalue listings of Tables 1–4, it will be seen that for each distinct type of mode, a three by
three array of eigenvalues is provided for a range of plate aspect ratios. The value of ‘m’, moving across the
top of the array, indicates the number of half or quarter waves in displacement, as appropriate, as we move
along the x-axis. The parameter n increases from 1 to 3 as we move down the array and indicates the order of
the mode, first, second, etc. This does not include the one-dimensional modes where they exist. A pair of
asterisks adjacent to a mode family heading indicates that one-dimensional modes also exist for that family
and that exact eigenvalues and mode shapes for these modes are to be found in the text.

It will be noted that tabulated eigenvalues are given to four significant digits. Also, it will be noted that for
plates with aspect ratios less than one, tabulated eigenvalues are non-dimensionalized with respect to b, the
shorter of the two edge lengths of the quarter plate (Fig. 2). This is in keeping with practices followed earlier in
plate lateral free vibration analysis.
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Table 1

Eigenvalues, l2, for the SS1-F-SS1-F rectangular plate. Eigenvalues, l2b, stored when inverse of aspect ratio, f1, listed

Fully symmetric modes��

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 1.624 3.391 5.107 1.659 3.401 5.108 1.679 3.404 5.109 1.695 3.406 5.109

2 3.449 4.037 5.737 2.359 3.893 5.666 2.190 3.825 5.632 2.019 3.768 5.604

3 4.306 6.313 6.642 3.214 4.741 6.242 3.021 4.428 6.024 3.157 4.104 5.812

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.259 2.694 4.080 1.013 2.223 3.391 0.7038 1.624 2.518

2 2.338 3.427 4.697 2.098 3.058 4.037 1.749 3.449 3.285

3 3.065 4.699 5.789 2.892 4.202 6.313 2.776 4.306 4.531

Fully antisymmetric modes

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 1.682 2.607 4.263 1.156 2.573 4.258 1.046 2.561 4.257 0.9331 2.555 4.257

2 2.517 4.705 5.338 1.597 3.550 5.063 1.569 3.310 4.919 1.530 3.063 4.785

3 3.801 5.186 7.718 2.196 4.531 5.931 1.983 4.160 5.546 1.713 3.620 5.144

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.137 2.146 3.423 0.9717 1.866 2.874 0.7402 1.568 2.221

2 1.533 3.506 4.609 1.497 3.059 4.160 1.493 2.353 3.590

3 2.341 3.862 5.882 2.229 3.425 5.174 2.098 2.974 3.994

Modes symmetric about the x-axis and anti-symmetric about the Z-axis

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 0.7038 2.518 4.252 0.7485 2.539 4.256 0.7779 2.548 4.257 0.8121 2.553 4.257

2 1.749 3.285 4.867 1.611 3.072 4.767 1.502 2.963 4.721 1.725 2.869 4.683

3 2.776 4.531 5.926 2.283 4.073 5.463 1.994 3.724 5.202 2.153 3.321 4.942

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 0.5199 1.985 3.391 0.4000 1.624 2.811 0.2570 1.167 2.074

2 1.532 2.884 4.037 1.390 3.449 3.524 1.222 2.253 2.949

3 2.749 3.904 6.313 2.745 4.306 4.801 2.751 2.991 4.018
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Table 1 (continued )

Modes symmetric about the Z-axis and anti-symmetric about the x-axis

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 1.682 2.607 4.263 1.156 2.573 4.258 1.046 2.561 4.257 0.9331 2.555 4.257

2 2.517 5.186 5.338 1.597 3.550 5.063 1.569 3.310 4.919 1.530 3.063 4.785

3 3.801 4.705 7.718 2.196 4.531 5.931 1.983 4.160 5.546 1.713 3.620 5.144

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.137 2.146 3.423 0.9717 1.866 2.874 0.7402 1.568 2.221

2 1.533 3.506 4.609 1.497 3.059 4.160 1.493 2.352 3.590

3 2.341 3.862 5.882 2.229 3.425 5.174 2.098 2.974 3.994

Table 2

Eigenvalues, l2, for the SS1-C-SS1-C rectangular plate. Eigenvalues, l2b, stored when inverse of aspect ratio, fj, listed

Fully symmetric modes��

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 2.205 3.865 5.667 2.070 3.808 5.633 1.999 3.778 5.614 1.933 3.750 5.597

2 3.422 4.825 6.338 3.051 4.444 6.062 2.769 4.225 5.912 2.413 4.002 5.762

3 4.241 6.104 7.450 3.735 5.424 6.822 3.459 4.967 6.457 3.052 4.453 6.077

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.935 3.169 4.580 1.783 2.722 3.865 1.638 2.205 2.999

2 3.054 4.285 5.404 2.796 3.930 4.825 2.479 3.422 4.153

3 4.007 5.397 6.649 3.900 4.837 6.104 3.800 4.241 5.188

Fully antisymmetric modes

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 1.747 3.513 5.079 1.640 3.256 4.918 1.561 3.110 4.832 1.405 2.965 4.748

2 2.814 4.682 6.137 2.310 4.238 5.633 2.007 3.864 5.340 1.725 3.427 5.039

3 3.570 5.116 7.432 3.000 4.841 6.607 2.626 4.680 6.073 2.164 4.047 5.484

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.510 3.097 4.265 1.362 2.811 3.755 1.193 2.342 3.166

2 2.783 3.942 5.464 2.773 3.450 4.993 2.771 3.010 4.072

3 3.440 4.627 6.399 3.361 4.327 5.492 3.274 3.939 4.701
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Table 2 (continued )

Modes symmetric about the x-axis and anti-symmetric about the Z-axis

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 1.638 2.999 4.760 1.393 2.916 4.716 1.250 2.874 4.694 1.103 2.834 4.673

2 2.479 4.153 5.555 2.172 3.722 5.232 1.972 3.455 5.052 1.711 3.169 5.245

3 3.810 5.188 6.780 3.099 4.727 6.099 2.642 4.301 5.685 2.121 3.725 5.245

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.581 2.508 3.865 1.558 2.205 3.283 1.545 1.875 2.588

2 2.301 3.741 4.825 2.191 3.422 4.373 2.066 2.958 3.814

3 3.773 4.573 6.104 3.754 4.241 5.531 3.737 3.963 4.669

Modes symmetric about the Z-axis and anti-symmetric about the x-axis

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 1.747 3.513 5.079 1.640 3.256 4.918 1.561 3.110 4.832 1.405 2.965 4.748

2 2.814 4.682 6.137 2.310 4.238 5.633 2.007 3.864 5.341 1.725 3.427 5.039

3 3.570 5.118 7.432 3.000 4.841 6.607 2.626 4.680 6.073 2.164 4.047 5.484

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.510 3.097 4.265 1.362 2.811 3.755 1.193 2.342 3.166

2 2.783 3.942 5.464 2.773 3.450 4.993 2.771 3.010 4.072

3 3.440 4.627 6.399 3.361 4.327 5.492 3.274 3.939 4.701

Table 3

Eigenvalues, l2, for the SS2-F-SS2-F rectangular plate. Eigenvalues, l2b, stored when inverse of aspect ratio, fj, listed

Fully symmetric modes��

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 0.7038 2.518 4.252 0.7485 2.539 4.256 0.7779 2.548 4.257 0.8121 2.553 4.257

2 1.749 3.285 4.867 1.611 3.072 4.767 1.502 2.963 4.721 1.724 2.869 4.683

3 2.776 4.531 5.926 2.283 4.073 5.463 1.994 3.724 5.202 2.153 3.321 4.942

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 0.5199 1.985 3.391 0.4000 1.624 2.811 0.2570 1.167 2.074

2 1.532 2.884 4.037 1.390 3.449 3.524 1.222 2.253 2.949

3 2.749 3.904 6.313 2.745 4.306 4.801 2.751 2.991 4.018
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Table 3 (continued )

Fully antisymmetric modes

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 1.866 3.423 5.111 1.776 3.410 5.109 1.738 3.407 5.109 1.712 3.406 5.109

2 3.059 4.609 6.125 2.872 4.270 5.903 3.137 4.084 5.789 2.304 3.904 5.685

3 3.425 5.882 7.241 3.195 6.174 6.655 3.457 4.827 6.319 2.941 4.349 5.981

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.622 2.767 4.094 1.485 2.347 3.423 1.682 1.866 2.607

2 2.497 4.073 5.187 2.113 3.716 4.609 2.517 3.060 4.705

3 3.064 4.990 6.440 2.822 4.225 5.882 3.801 3.425 5.186

Modes symmetric about the x-axis and anti-symmetric about the Z-axis��

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 3.582 7.025 9.935 3.582 6.767 9.754 3.582 6.623 9.655 3.512 6.477 9.555

2 4.443 7.164 10.75 4.023 7.164 10.68 3.776 7.164 10.31 3.582 7.025 9.935

3 7.025 8.886 11.33 5.928 8.046 10.75 5.236 7.551 10.75 4.443 7.164 10.54

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 2.866 5.731 8.168 2.388 4.776 7.025 1.791 3.582 5.373

2 4.023 5.928 8.597 3.776 5.236 7.164 3.512 4.443 5.664

3 6.767 8.046 9.815 6.623 7.551 8.886 6.477 7.025 7.854

Modes symmetric about the Z-axis and anti-symmetric about the x-axis

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 1.682 2.607 4.263 1.156 2.573 4.258 1.046 2.561 4.257 0.9331 2.555 4.257

2 2.517 5.186 5.338 1.597 3.550 5.063 1.569 3.310 4.919 1.530 3.063 4.785

3 3.801 4.705 7.718 2.196 4.531 5.931 1.983 4.160 5.546 1.713 3.620 5.144

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.137 2.146 3.423 0.9717 1.866 2.874 0.7402 1.568 2.221

2 1.533 3.506 4.609 1.497 3.059 4.160 1.493 2.352 3.590

3 2.341 3.862 5.882 2.229 3.425 5.174 2.098 2.974 3.994
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Table 4

Eigenvalues, l2, for the SS2-C-SS2-C rectangular plate. Eigenvalues, l2b, stored when inverse of aspect ratio, fj, listed

Fully symmetric modes

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 1.638 2.999 4.760 1.393 2.916 4.716 1.250 2.874 4.694 1.103 2.834 4.672

2 2.479 4.153 5.555 2.172 3.722 5.232 1.972 3.455 5.052 1.711 3.169 4.872

3 3.809 5.188 6.780 3.099 4.727 6.099 2.643 4.301 5.685 2.121 3.725 5.245

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.581 2.508 3.865 1.558 2.205 3.283 1.545 1.875 2.588

2 2.301 3.741 4.825 2.191 3.422 4.373 2.066 2.958 3.814

3 3.773 4.573 6.104 3.754 4.241 5.531 3.737 3.963 4.669

Fully antisymmetric modes��

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 2.811 4.265 5.931 2.532 4.063 5.798 2.342 3.954 5.728 2.132 3.847 5.660

2 3.450 5.464 6.855 3.257 4.910 6.409 3.121 4.570 6.157 2.732 4.207 5.903

3 4.327 6.399 8.095 3.761 5.945 7.288 3.411 5.397 6.801 3.199 4.733 6.284

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 2449 3.657 4.912 2.150 3.280 4.265 1.747 2.811 3.513

2 3.076 4.879 6.000 2.923 4.286 5.464 2.814 3.450 4.682

3 4.017 5.331 7.284 3.812 4.828 6.399 3.570 4.327 5.116

Modes symmetric about the x-axis and anti-symmetric about the Z-axis

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 2.205 3.865 5.667 2.070 3.808 5.638 1.999 3.778 5.614 1.933 3.751 5.597

2 3.422 4.825 6.338 3.051 4.444 6.062 2.769 4.225 5.912 2.413 4.002 5.762

3 4.241 6.104 7.450 3.735 5.424 6.822 3.459 4.967 6.457 3.052 4.453 6.077

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 1.935 3.169 4.580 1.783 2.722 3.865 1.638 2.205 2.999

2 3.054 4.285 5.404 2.796 3.930 4.825 2.479 3.422 4.153

3 4.000 5.397 6.649 3.900 4.837 6.104 3.809 4.241 5.188
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Table 4 (continued )

Modes symmetric about the Z-axis and anti-symmetric about the x-axis

m

f ¼ 1:0 f ¼ 1:25 f ¼ 1:5 f ¼ 2:0

n 1 2 3 1 2 3 1 2 3 1 2 3

1 2.811 4.625 5.931 2.532 4.063 5.798 2.342 3.954 5.729 2.132 3.847 5.660

2 3.450 5.464 6.855 3.257 4.910 6.409 3.122 4.570 6.157 2.732 4.207 5.903

3 4.327 6.399 8.095 3.761 5.945 7.288 3.411 5.397 6.801 3.200 4.733 6.284

fj ¼ 1:25 fj ¼ 1:5 fj ¼ 2:0

n 1 2 3 1 2 3 1 2 3

1 2.450 3.657 4.912 2.150 3.280 4.265 1.747 2.811 3.513

2 3.076 4.879 6.000 2.923 4.286 5.464 2.814 3.450 4.682

3 4.017 5.331 7.284 3.812 4.828 6.399 3.570 4.327 5.116
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Fig. 3. Vibratory displacement pattern for first fully symmetric mode of square plate with designation SS1-F-SS1-F.
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3.2. Mode shape studies

Mode shapes associated with any eigenvalue are easily generated. The practice has been to plot the shape of
the quarter plate only. Numerous such mode shapes have been generated, however, only a limited number are
presented here for the purposes of discussion.

In Fig. 3 the computed quarter-plate first mode displacement pattern is presented for a square plate with the
designation SS1-F-SS1-F. It is evident that displacement parallel to the axes of the quarter plate equals zero.
This required condition will be observed in all plate displacement patterns for fully symmetric mode shapes
presented here. It is also evident in Fig. 3 that there is zero displacement parallel to the edge, x ¼ 1 (Fig. 2).
This is a requirement of simply supported edges with the designation SS1.
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Fig. 5. Vibratory displacement pattern for first fully symmetric mode of square plate with designation SS2-F-SS2-F.
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Fig. 4. Vibratory displacement pattern for first fully symmetric mode of square plate with designation SS1-C-SS1-C.
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Turning to Fig. 4 related to the SS1-C-SS1-C plate we find that edge conditions discussed above in
connection with Fig. 3 are also satisfied. Here, however, the clamped condition along the edge, Z ¼ 1, is highly
evident.

Boundary conditions related to the mode shape of Fig. 5 (the SS2-F-SS2-F plate) differ from those of the
plate of Fig. 3 only in that now class SS2 conditions are imposed along the edge, x ¼ 1. This is evidenced by
the fact that displacement normal to the edge, x ¼ 1, is equal to zero.
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Fig. 6. Vibratory displacement pattern for first fully symmetric mode of square plate with designation SS2-C-SS2-C.
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Finally, boundary conditions related to the mode shape of Fig. 6 (the SS2-C-SS2-C plate) differ from those
of the plate of Fig. 4 only in connection with the class SS2 conditions imposed along the edge, x ¼ 1. It is seen
that displacement normal to this edge is again zero.
4. Discussion and conclusions

Exact solutions have been obtained in an orderly fashion for the free in-plane vibration eigenvalues and
mode shapes of two families of rectangular plates, each with a pair of opposite edges simply supported. The
two distinct classes of simple support are clearly defined. It is pointed out that they have a counterpart in the
well known simple support conditions utilized in rectangular plate free lateral vibration analysis. The major
difference is that in in-plane vibration there exists two distinct edge condition formulations which are
considered to act as simple support.

It is well known that in the study of rectangular plate free lateral vibration exact solutions can be obtained
for a vast array of problems provided one pair of opposite edges are given what is referred to as simple
support. It is shown here that a vast array of exact solutions can also be obtained for rectangular plate in-
plane free vibration provided one pair of opposite edges are given what is referred to here as simple edge
support. However, here there are two distinct simple support edge condition formulations, each of which leads
to a vast array of exact solutions.

The present study has been limited to plates, where non-simply supported edges are each free or are given
clamped edge support. It will be obvious to the reader that exact solutions can be obtained for many other
combinations of support enforced along these latter edges. Furthermore, plates with combinations of the two
classes of simple support discussed here can be analyzed. This represents future work for investigators.

To the author’s knowledge the present study represents the first thorough and orderly attempt to classify
these simple support boundary conditions. It has been shown that exact solutions are obtained for the in-plane
vibration of rectangular plates with either of these classes of simple support acting along a pair of opposite
edges. The work presented here is expected to provide further insight into the overall subject of free in-plane
vibration of rectangular plates.
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Appendix A. Plates with type SS1 boundary conditions

A.1. Fully antisymmetric modes

Again we turn to Ref. [5] and focus on the series utilized in this earlier paper to analyze fully antisymmetric
modes. Taking a single term from this series we have

V ðx; ZÞ ¼ VmðZÞ cos
ð2m� 1Þpx

2
(A.1)

and

Umðx; ZÞ ¼ UmðZÞ sin
ð2m� 1Þpx

2
, (A.2)

where m takes on the values 1, 2, 3, etc.
It is easily verified that the above trigonometric functions satisfy exactly all the conditions at their

extremities as required by the problem presently under investigation.
Substituting the above expressions in the governing differential equations we again arrive at Eqs. (5) and (6)

of the main text. Now the quantity EMP ¼ ð2m� 1Þp=2. The coefficients appearing in these equations are
unchanged with the exception of bm2 which must now be replaced by its negative.

A differential equation governing the quantity, V mðZÞ, identical in form to Eq. (7), is now obtained with the
same expressions for the quantities b and c. The same three possible forms of solution for V mðZÞ as given by
Eqs. (8)–(10) are therefore applicable. Of course, this time terms symmetric about the x-axis must be deleted.
Quantities UmðZÞ are obtained in the manner described earlier. This leads to the following results.

Case 1: Solution 1 applicable.

VmðZÞ ¼ Am sinh bmZþ Cm sin gmZ (A.3)

and

UmðZÞ ¼ Ama1m cosh bmZþ Cma3m cos gmZ, (A.4)

where a1m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2 and a3m ¼ �gm½am1am2g2m þ am1cm2 � bm1bm2�=cm1bm2.

(1) Plate with free edges.

VmðZÞ ¼ Am½sinh bmZþ y1m sin gmZ� (A.5)

and

UmðZÞ ¼ Am½a1m cosh bmZþ y1ma3m cos gmZ�, (A.6)

with

y1m ¼
½a1mbm � fEMP� sinh bm

½a3mgm þ fEMP� sin gm

and

y11m ¼
bm

f
þ nEMPa1m

� �
cosh bm þ y1m

gm

f
þ nEMPa3m

� �
cos gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (A.5) and (A.6):

y1m ¼ �
a1m cosh bm

a3m cos gm

and y11m ¼ sinh bm þ y1m sin gm.
Case 2: Solution 2 applicable.

VmðZÞ ¼ Am sin bmZþ Cm sin gmZ (A.7)
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and

UmðZÞ ¼ Ama1m cos bmZþ Cma3m cos gmZ, (A.8)

where a1m ¼ �bm½am1am2b
2
m � am1cm2 þ bm1bm2�=cm1bm2 and

a3m ¼ �gm½am1am2g2m � am1cm2 þ bm1bm2�=cm1bm2.

(1) Plate with free edges.

VmðZÞ ¼ Am½sin bmZþ y1m sin gmZ� (A.9)

and

UmðZÞ ¼ Am½a1m cos bmZþ y1ma3m cos gmZ�, (A.10)

with

y1m ¼ �
½a1mbm þ fEMP� sin bm

½a3mgm þ fEMP� sin gm

and

y11m ¼
bm

f
þ nEMPa1m

� �
cos bm þ y1m

gm

f
þ nEMPa3m

� �
cos gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (A.9) and (A.10):

y1m ¼ �
a1m cos bm

a3m cos gm

and

y11m ¼ sin bm þ y1m sin gm.

Case 3: Solution 3 applicable.

VmðZÞ ¼ Am sinh bmZþ Cm sinh gmZ (A.11)

and

UmðZÞ ¼ Ama1m cosh bmZþ Cma3m cosh gmZ, (A.12)

where a1m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2 and a3m ¼ gm½am1am2g2m þ am1cm2 � bm1bm2�=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Am½sinh bmZþ y1m sinh gmZ� (A.13)

and

UmðZÞ ¼ Am½a1m cosh bmZþ y1ma3m cosh gmZ�, (A.14)

with

y1m ¼ �
½a1mbm � fEMP� sinh bm

½a3mgm þ fEMP� sinh gm

and

y11m ¼
bm

f
þ nEMPa1m

� �
cosh bm þ y1m

gm

f
þ nEMPa3m

� �
cosh gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (A.13) and (A.14):

y1m ¼ �a1m cosh bm=ða3m cosh gmÞ
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and

y11m ¼ sinh bm þ y1m sinh gm.

A.2. Modes symmetric about x-axis and antisymmetric about Z-axis

It will be obvious that analysis of modes of this family differs from that of the antisymmetric–antisymmetric
mode analysis just described, only in that now expressions for the displacement V mðZÞ must be symmetric with
respect to the x-axis. Solutions obtained are as follows.

Case 1: Solution 1 applicable.

V mðZÞ ¼ Bm cosh bmZþDm cos gmZ (A.15)

and

UmðZÞ ¼ Bma2m sinh bmZþ Cma4m sin gmZ, (A.16)

where a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2 and a4m ¼ gm½am1am2g2m � am1cm2 þ bm1bm2�=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Bm½cosh bmZþ y1m cos gmZ� (A.17)

and

UmðZÞ ¼ Bm½a2m sinh bmZþ y1ma4m sin gmZ�, (A.18)

with

y1m ¼ �
½a2mbm � fEMP� cosh bm

½a4mgm � fEMP� cos gm

and

y11m ¼
bm

f
þ nEMPa2m

� �
sinh bm � y1m

gm

f
� nEMPa4m

� �
sin gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (A.17) and (A.18):

y1m ¼ �
a2m sinh bm

a4m sin gm

and y11m ¼ cosh bm þ y1m cos gm.
Case 2: Solution 2 applicable.

VmðZÞ ¼ Bm cos bmZþDm cos gmZ (A.19)

and

UmðZÞ ¼ Bma2m sin bmZþ Cma4m sin gmZ, (A.20)

where a2m ¼ bm½am1am2b
2
m � am1cm2 þ bm1bm2�=cm1bm2 and

a4m ¼ gm½am1am2g2m � am1cm2 þ bm1bm2�=cm1bm2.

(1) Plate with free edges.

VmðZÞ ¼ Bm½cos bmZþ y1m cos gmZ� (A.21)

and

UmðZÞ ¼ Bm½a2m sin bmZþ y1ma4m sin gmZ�, (A.22)

with

y1m ¼ �
½a2mbm � fEMP� cos bm

½a4mgm � fEMP� cos gm
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and

y11m ¼ �
bm

f
� nEMPa2m

� �
sin bm � y1m

gm

f
� nEMPa4m

� �
sin gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (A.21) and (A.22):

y1m ¼ �
a2m sin bm

a4m sin gm

and y11m ¼ cos bm þ y1m cos gm.
Case 3: Solution 3 applicable.

VmðZÞ ¼ Bm cosh bmZþDm cosh gmZ (A.23)

and

UmðZÞ ¼ Bma2m sinh bmZþDma4m sinh gmZ, (A.24)

where a2m ¼ bm½am1am2b
2
m þ am1cm2 � bm1bm2�=cm1bm2 and a4m ¼ gm½am1am2g2m þ am1cm2 � bm1bm2�=cm1bm2.

(1) Plate with free edges.

VmðZÞ ¼ Bm½cosh bmZþ y1m cosh gmZ� (A.25)

and

UmðZÞ ¼ Bm½a2m sinh bmZþ y1ma4m sinh gmZ�, (A.26)

with

y1m ¼ �
½a2mbm � fEMP� cosh bm

½a4mgm � fEMP� cosh gm

and

y11m ¼
bm

f
þ nEMPa2m

� �
sinh bm þ y1m

gm

f
þ nEMPa4m

� �
sinh gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (A.25) and (A.26):

y1m ¼ �
a2m sinh bm

a4m sinh gm

and y11m ¼ cosh bm þ y1m cosh gm.

A.3. Modes symmetric about the Z-axis and antisymmetric about the x-axis

Analysis of modes of this family differs from that of fully symmetric modes discussed earlier only in that
expressions for the displacement V mðZÞ must now be antisymmetric with respect to the x-axis. Solutions are as
follows. For mX1:

Case 1: Solution 1 applicable.

V mðZÞ ¼ Am sinh bmZþ Cm sin gmZ (A.27)

and

UmðZÞ ¼ Ama1m cosh bmZþ Cma3m cos gmZ, (A.28)

where a1m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2 and a3m ¼ �gmðam1am2g2m þ am1cm2 � bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Am½sinh bmZþ y1m sin gmZ� (A.29)
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and

UmðZÞ ¼ Am½a1m cosh bmZþ y1ma3m cos gmZ�, (A.30)

with

y1m ¼
½a1mbm þ fEMP� sinh bm

½a3mgm � fEMP� sin gm

and

y11m ¼
bm

f
� nEMPa1m

� �
cosh bm þ y1m

gm

f
� nEMPa3m

� �
cos gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (A.29) and (A.30):

y1m ¼ �
a1m cosh bm

a3m cos gm

and y11m ¼ sinh bm þ y1m sin gm.
Case 2: Solution 2 applicable.

VmðZÞ ¼ Am sin bmZþ cm sin gmZ (A.31)

and

UmðZÞ ¼ Ama1m cos bmZþ Cma3m cos gmZ, (A.32)

where a1m ¼ �bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2 and a3m ¼ �gmðam1am2g2m þ am1cm2 � bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Am½sin bmZþ y1m sin gmZ� (A.33)

and

UmðZÞ ¼ Am½a1m cos bmZþ y1ma3m cos gmZ�, (A.34)

with

y1m ¼ �
½a1mbm � fEMP� sin bm

½a3mgm � fEMP� sin gm

and

y11m ¼
bm

f
þ nEMPa1m

� �
cos bm þ y1m

gm

f
� nEMPa3m

� �
cos gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (A.33) and (A.34):

y1m ¼ �
a1m cos bm

a3m cos gm

and y11m ¼ sin bm þ y1m sin gm.
Case 3: Solution 3 applicable.

V mðZÞ ¼ Am sinh bmZþ Cm sinh gmZ (A.35)

and

UmðZÞ ¼ Ama1m cosh bmZþ Cma3m cosh gmZ, (A.36)

where a1m ¼ �bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2 and a3m ¼ gmðam1am2g2m þ am1cm2 � bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Am½sinh bmZþ y1m sinh gmZ� (A.37)
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and

UmðZÞ ¼ Am½a1m cosh bmZþ y1ma3m cosh gmZ�, (A.38)

with

y1m ¼ �
½a1mbm þ fEMP� sinh bm

½a3mgm þ fEMP� sinh gm

and

y11m ¼
bm

f
� nEMPa1m

� �
cosh bm þ y1m

gm

f
� nEMPa3m

� �
cosh gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (A.37) and (A.38):

y1m ¼ �
a1m cosh bm

a3m cosh gm

and y11m ¼ sinh bm þ y1m sinh gm.
Next, the one-dimensional mode ðm ¼ 1Þ. Again, the solution for displacement UðZÞ is as given by Eq. (25).

In view of the antisymmetry of displacement with respect to the x-axis, as discussed earlier, we have

UðZÞ ¼ B cos aZ. (A.39)

Enforcing the condition of shear stress along the edge, Z ¼ 1, we obtain

B sin aZjZ¼1 ¼ 0 (A.40)

and hence, a ¼ p; 2p; . . . ; np; n ¼ 1; 2; . . . ; etc., with associated eigenvalues given by

l2 ¼ np½a66�
1=2=f. (A.41)

Exact solutions for the one-dimensional mode shapes and associated eigenvalues of the plate with free edges
is therefore provided by Eqs. (A.39) and (A.41).

For the plate with clamped edges a condition of zero displacement along the edge, Z ¼ 1, leads to the
equation

B cos aZjZ¼1 ¼ 0. (A.42)

We therefore have a ¼ p=2; 3p=2; . . . ; ð2n� 1Þp=2; n ¼ 1; 2; . . ., etc., and hence,

l2 ¼ ð2n� 1Þp=2½a66�
1=2=f. (A.43)

Eqs. (A.39) and (A.43) provide mode shape and eigenvalues for the plate with clamped edges.

Appendix B. Plates with type SS2 boundary conditions

B.1. Fully antisymmetric modes

Again we turn to Ref. [4] and focus on the series utilized in this earlier paper to analyze fully antisymmetric
modes. Taking a single term from this series we have

Uðx; ZÞ ¼ UmðZÞ sinmpx (B.1)

and

V ðx; ZÞ ¼ VmðZÞ cosmpx, (B.2)

with m ¼ 0; 1; 2; etc.
We begin by considering terms with mX1. It is easily verified that the above trigonometric functions satisfy

all of the conditions at their extremities as required by the problem under investigation.
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Substituting the above equations we again arrive at Eqs. (5) and (6). Now the quantity EMP equals mp.
Coefficients appearing in these equations are unchanged with the exception of bm1 and bm2 which must be
replaced by their negatives.

A differential equation governing the quantity VmðZÞ, identical to Eq. (7), is now obtained with the
same expressions for quantities b and c. The same three possible forms of solution for V mðZÞ as given by
Eqs. (8)–(10) are applicable. This time terms symmetric about the x-axis must be deleted and quantities UmðZÞ
are obtained as described earlier. This leads to the following results.

Case 1: Solution 1 applicable.

V mðZÞ ¼ Am sinh bmZþ Cm sin gmZ (B.3)

and

UmðZÞ ¼ Ama1m cosh bmZþ Cma3m cos gmZ, (B.4)

where a1m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2 and a3m ¼ �gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

VmðZÞ ¼ Am½sinh bmZþ y1m sin gmZ� (B.5)

and

UmðZÞ ¼ Am½a1m cosh bmZþ y1ma3m cos gmZ�, (B.6)

with

y1m ¼ �
½a1mbm � fEMP� sinh bm

½a3mgm þ fEMP� sin gm

and

y11m ¼
bm

f
þ nEMPa1m

� �
cosh bm þ y1m

gm

f
þ nEMPa3m

� �
cos gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (B.5) and (B.6):

y1m ¼ �
a1m cosh bm

a3m cos gm

and y11m ¼ sinh bm þ y1m sin gm.
Case 2: Solution 2 applicable.

VmðZÞ ¼ Am sin bmZþ Cm sin gmZ (B.7)

and

UmðZÞ ¼ Ama1m cos bmZþ Cma3m cos gmZ, (B.8)

where a1m ¼ �bmðam1am2b
2
m � am1cm2 þ bm1bm2Þ=cm1bm2 and a3m ¼ �gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Am½sin bmZþ y1m sin gmZ� (B.9)

and

UmðZÞ ¼ Am½a1m cos bmZþ y1ma3m cos gmZ�, (B.10)

with

y1m ¼ �
½a1mbm þ fEMP� sin bm

½a3mgm þ fEMP� sin gm
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and

y11m ¼
bm

f
þ nEMPa1m

� �
cos bm þ y1m

gm

f
þ nEMPa3m

� �
cos gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (B.9) and (B.10):

y1m ¼ �
a1m cos bm

a3m cos gm

and y11m ¼ sin bm þ y1m sin gm.
Case 3: Solution 3 applicable

VmðZÞ ¼ Am sinh bmZþ Cm sinh gmZ (B.11)

and

UmðZÞ ¼ Ama1m cosh bmZþ Cma3m cosh gmZ, (B.12)

where a1m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2 and a3m ¼ gmðam1am2g2m þ am1cm2 � bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Am½sinh bmZþ y1m sinh gmZ� (B.13)

and

UmðZÞ ¼ Am½a1m cosh bmZþ y1ma3m cosh gmZ�, (B.14)

with

y1m ¼ �
½a1mbm � fEMP� sinh bm

½a3mgm � fEMP� sinh gm

and

y11m ¼
bm

f
þ nEMPa1m

� �
cosh bm þ y1m

gm

f
þ nEMPa3m

� �
cosh gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (B.13) and (B.14):

y1m ¼ �
a1m cosh bm

a3m cosh gm

and y11m ¼ sinh bm þ y1m sinh gm.
Next, the one-dimensional case ðm ¼ 0Þ. Returning to Eqs. (B.1) and (B.2) it is seen that for this mode only

the quantity VmðZÞ will be non-zero. The governing differential equation becomes

VmðZÞ þ a2VmðZÞ ¼ 0, (B.15)

where a2 ¼ l4f2=a11.
Deleting the term of the solution (Eq. (25)) antisymmetric about the x-axis from the solution to Eq. (B.15)

we are left with

VmðZÞ ¼ A sin aZ. (B.16)

Enforcing the condition of zero stress normal to the edge, Z ¼ 1, we obtain the requirement

A cos aZjZ¼1 ¼ 0, (B.17)

from which we obtain a ¼ p=2; 3p=2; . . . ; ð2n� 1Þp=2, n ¼ 1; 2; 3; etc., hence the eigenvalues are

l2 ¼ ð2n� 1Þ
p
2
½a11�

1=2=f. (B.18)

Exact mode shapes and eigenvalues for this family of modes are therefore available from Eqs. (B.16) and (B.18).



ARTICLE IN PRESS
D.J. Gorman / Journal of Sound and Vibration 294 (2006) 131–161158
For the case of clamped edges, enforcing a condition of zero displacement normal to the edge, Z ¼ 1, we
obtain

A sin aZjZ¼1 ¼ 0 (B.19)

and therefore, a ¼ p; 2p; 3p; . . . np, n ¼ 1; 2; 3; etc. Eigenvalues are expressed as

l2 ¼ np½a11�
1=2=f. (B.20)

B.2. Modes symmetric about the x-axis and antisymmetric about the Z-axis

Analysis of this mode family differs from that of antisymmetric–antisymmetric modes just described only in
that now displacement VmðZÞ must be symmetric with respect to the x-axis. Solutions obtained are as follows.

First, terms for which mX1 are considered.
Case 1: Solution 1 applicable.

V mðZÞ ¼ Bm cosh bmZþDm cos gmZ (B.21)

and

UmðZÞ ¼ Bma2m sinh bmZþDma4m sin gmZ, (B.22)

where a2m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2 and a4m ¼ gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Bm½cosh bmZþ y1m cos gmZ� (B.23)

and

UmðZÞ ¼ Bm½a2m sinh bmZþ y1ma4m sin gmZ�, (B.24)

with

y1m ¼ �
½a2mbm þ fEMP� cosh bm

½a4mgm þ fEMP� cos gm

and

y11m ¼
bm

f
þ nEMPa2m

� �
sinh bm � y1m

gm

f
þ nEMPa4m

� �
sin gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (B.23) and (B.24):

y1m ¼ �
a2m sinh bm

a4m sin gm

and y11m ¼ cosh bm þ y1m cos gm.
Case 2: Solution 2 applicable.

VmðZÞ ¼ Bm cos bmZþDm cos gmZ (B.25)

and

UmðZÞ ¼ Bma2m sin bmZþDma4m sin gmZ, (B.26)

where a2m ¼ bmðam1am2b
2
m � am1cm2 þ bm1bm2Þ=cm1bm2, a4m ¼ gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

VmðZÞ ¼ Bm½cos bmZþ y1m cos gmZ� (B.27)

and

UmðZÞ ¼ Bm½a2m sin bmZþ y1ma4m sin gmZ�, (B.28)
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with

y1m ¼ �
½a2mbm þ fEMP� cos bm

½a4mgm þ fEMP� cos gm

and

y11m ¼ �
bm

f
þ nEMPa2m

� �
sin bm � y1m

gm

f
þ nEMPa4m

� �
sin gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (B.27) and (B.28):

y1m ¼ �
a2m sin bm

a4m sin gm

and y11m ¼ cos bm þ y1m cos gm.
Case 3: Solution 3 applicable.

VmðZÞ ¼ Bm cosh bmZþDm cosh gmZ (B.29)

and

UmðZÞ ¼ Bma2m sinh bmZþDma4m sinh gmZ, (B.30)

where a2m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2 and a4m ¼ gmðam1am2g2m þ am1cm2 � bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

VmðZÞ ¼ Bm½cosh bmZþ y1m cosh gmZ� (B.31)

and

UmðZÞ ¼ Bm½a2m sinh bmZþ y1ma4m sinh gmZ�, (B.32)

with

y1m ¼ �
½a2mbm þ fEMP� cosh bm

½a4mgm þ fEMP� cosh gm

and

y11m ¼
bm

f
� nEMPa2m

� �
sinh bm þ y1m

gm

f
� nEMPa4m

� �
sinh gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (B.31) and (B.32):

y1m ¼ �
a2m sinh bm

a4m sinh gm

and y11m ¼ cosh bm þ y1m cosh gm.
Next, the one-dimensional problem ðm ¼ 0Þ. Returning to Eq. (B.15) and deleting the term antisymmetric

about the x-axis we obtain

V ðZÞ ¼ B cos aZ. (B.33)

Enforcing the condition of zero normal stress along the edge, Z ¼ 1, we obtain

B sin aZjZ¼1 ¼ 0, (B.34)

from which we obtain, a ¼ p; 2p; 3p . . . np etc., n ¼ 1; 2; 3 . . . . Eigenvalues are therefore given by the
expression

l2 ¼ np½a11�
1=2=f. (B.35)

Exact mode shapes and eigenvalues for one-dimensional modes of the plate with free edges are therefore
given by Eqs. (B.33) and (B.35).
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Returning to Eq. (B.33) and enforcing the condition of zero displacement normal to the edge, Z ¼ 1, we
obtain the equation

B cos aZjZ¼1 ¼ 0, (B.36)

from which we obtain a ¼ p=2; 3p=2; . . . ð2n� 1Þp=2, etc., n ¼ 1; 2; 3. Eigenvalues for this mode family
therefore become

l2 ¼ ð2n� 1Þ
p
2
½a11�

1=2=f. (B.37)

Exact mode shapes and eigenvalues for one-dimensional modes of the plate with clamped edges are
therefore given by Eqs. (B.33) and (B.37).

B.3. Modes symmetric about the Z-axis and antisymmetric about the x-axis

Analysis of modes of this family differs from that of fully symmetric modes discussed earlier only in that
expressions for the displacement V ðZÞ must be antisymmetric with respect to the x-axis. Solutions are as
follows.

Case 1: Solution 1 applicable.

V mðZÞ ¼ Am sinh bmZþ Cm sin gmZ (B.38)

and

UmðZÞ ¼ Ama1m cosh bmZþ Cma3m cos gmZ, (B.39)

where a1m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2 and a3m ¼ �gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

VmðZÞ ¼ Am½sinh bmZþ y1m sin gmZ� (B.40)

and

UmðZÞ ¼ Am½a1m cosh bmZþ y1ma3m cos gmZ�, (B.41)

with

y1m ¼
½a1mbm þ fEMP� sinh bm

½a3mgm � fEMP� sin gm

and

y11m ¼
bm

f
� nEMPa1m

� �
cosh bm þ y1m

gm

f
� nEMPa3m

� �
cos gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (B.40) and (B.41):

y1m ¼ �
a1m cosh bm

a3m cos gm

and y11m ¼ sinh bm þ y1m sin gm.
Case 2: Solution 2 applicable.

VmðZÞ ¼ Am sin bmZþ Cm sin gmZ (B.42)

and

UmðZÞ ¼ Ama1m cos bmZþ Cma3m cos gmZ, (B.43)

where a1m ¼ �bmðam1am2b
2
m � am1cm2 þ bm1bm2Þ=cm1bm2 and a3m ¼ �gmðam1am2g2m � am1cm2 þ bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Am½sin bmZþ y1m sin gmZ� (B.44)
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and

UmðZÞ ¼ Am½a1m cos bmZþ y1ma3m cos gmZ�, (B.45)

with

y1m ¼ �
½a1mbm � fEMP� sin bm

½a3mgm � fEMP� sin gm

and

y11m ¼
bm

f
� nEMPa1m

� �
cos bm þ y1m

gm

f
� nEMPa3m

� �
cos gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (B.44) and (B.45):

y1m ¼ �
a1m cos bm

a3m cos gm

and y11m ¼ sin bm þ y1m sin gm.
Case 3: Solution 3 applicable.

VmðZÞ ¼ Am sinh bmZþ Cm sinh gmZ (B.46)

and

UmðZÞ ¼ Ama1m cosh bmZþ Cma3m cosh gmZ, (B.47)

where a1m ¼ bmðam1am2b
2
m þ am1cm2 � bm1bm2Þ=cm1bm2 and a3m ¼ gmðam1am2g2m þ am1cm2 � bm1bm2Þ=cm1bm2.

(1) Plate with free edges.

V mðZÞ ¼ Am½sinh bmZþ y1m sinh gmZ� (B.48)

and

UmðZÞ ¼ Am½a1m cosh bmZþ y1ma3m cosh gmZ�, (B.49)

with

y1m ¼ �
½a1mbm þ fEMP� sinh bm

½a3mgm þ fEMP� sinh gm

and

y11m ¼
bm

f
� nEMPa1m

� �
cosh bm þ y1m

gm

f
� nEMPa3m

� �
cosh gm.

(2) Plate with clamped edges.
Displacements are given by Eqs. (B.48) and (B.49):

y1m ¼ �
a1m cosh bm

a3m cosh gm

and y11m ¼ sinh bm þ y1m sinh gm.
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